Feb 6, 2015, 9:37:37 AM (4 years ago)

Evaluation of optimization; diagram tweaks

1 edited


  • docs/Working/icGrep/fig-compiler.tex

    r4461 r4466  
    77\def\PabloCompiler{\Pablo{} Compiler}
    9 \begin{figure}[h] \label{fig:compiler}
    1111% Define block styles
    1212%\tikzstyle{decision} = [diamond, shape aspect=2, rotate=30, draw, text width=4.5em, text badly centered, inner sep=0pt, thick]
    13 \tikzstyle{block} = [rectangle, draw, text width=15em, text centered, minimum height=1.75em, thick, font=\ttfamily\bfseries, node distance=3.5em]
     13\tikzstyle{block} = [rectangle, draw, text width=12em, text centered, minimum height=1.75em, thick, font=\ttfamily\bfseries, node distance=3.5em]
    1414\tikzstyle{line} = [draw, ->, line width=1.4pt]
    15 \tikzstyle{seperator} = [draw, line width=0.125em, dashed]
     15\tikzstyle{separator} = [draw, line width=0.125em, dashed]
    1616\tikzset{block/.append style={execute at begin node=\footnotesize}}   
    1717\begin{tikzpicture}[node distance=3cm, auto, >=stealth]
    1919    % Place nodes
    2020    \node [draw=none] (RE) {\RegularExpression{}};
    21     \node [block, right of=RE, node distance=12em] (PropertyExtraction) {Property Extraction};
    2221    \node [block, below of=RE] (REParser) {\REParser{}};
    2322    \node [block, below of=REParser] (RETransform) {\RegularExpression{} Transformations};   
    3231    % Draw edges
    3332    \path [line] (RE) -- (REParser);
    34     \path [line] (RE) -- (PropertyExtraction);
     33    %\path [line] (RE) -- (PropertyExtraction);
    3534    \path [line] (REParser) -- (RETransform);
    3635    \path [line] (RETransform) -| (CUCompiler);
    4241    \path [line] (LLVMCompiler) -- (Matcher);
    44     % Draw seperators
    45     \coordinate[right of=REParser, node distance=20em] (SR);
    46     \coordinate[left of=REParser, node distance=20em] (SL);
    47     \path [seperator] (SL) -- (REParser);
    48     \path [seperator] (REParser) -- (SR);
     43    % Draw separators
     44    \coordinate[right of=REParser, node distance=15em] (SR);
     45    \coordinate[left of=REParser, node distance=15em] (SL);
     46    \path [separator] (SL) -- (REParser);
     47    \path [separator] (REParser) -- (SR);
    50     \coordinate[left of=Point, node distance=20em] (PL);
    51     \coordinate[right of=Point, node distance=20em] (PR);
    52     \path [seperator] (PL) -- (CUCompiler);
    53     \path [seperator] (CUCompiler) -- (RECompiler);
    54     \path [seperator] (RECompiler) -- (PR);
     49    \coordinate[left of=Point, node distance=15em] (PL);
     50    \coordinate[right of=Point, node distance=15em] (PR);
     51    %\path [separator] (PL) -- (CUCompiler);
     52    \path [separator] (CUCompiler) -- (RECompiler);
     53    %\path [separator] (RECompiler) -- (PR);
    56     \coordinate[right of=PabloCompiler, node distance=20em] (LR);
    57     \coordinate[left of=PabloCompiler, node distance=20em] (LL);
    58     \path [seperator] (LL) -- (PabloCompiler);
    59     \path [seperator] (PabloCompiler) -- (LR);   
     55    \coordinate[right of=PabloCompiler, node distance=15em] (LR);
     56    \coordinate[left of=PabloCompiler, node distance=15em] (LL);
     57    \path [separator] (LL) -- (PabloCompiler);
     58    \path [separator] (PabloCompiler) -- (LR);   
    61     \coordinate[right of=LLVMCompiler, node distance=20em] (OR);
    62     \coordinate[left of=LLVMCompiler, node distance=20em] (OL);
    63     \path [seperator] (OL) -- (LLVMCompiler);
    64     \path [seperator] (LLVMCompiler) -- (OR);       
     60    \coordinate[right of=LLVMCompiler, node distance=15em] (OR);
     61    \coordinate[left of=LLVMCompiler, node distance=15em] (OL);
     62    \path [separator] (OL) -- (LLVMCompiler);
     63    \path [separator] (LLVMCompiler) -- (OR);       
    6665    % Seperator text
    75 \caption{icGrep Architectural Diagram.}
     74\caption{icGrep Architectural Diagram}\label{fig:compiler}
    78 As show in Figure \ref{fig:compiler},
    79 icGrep is composed of three logical layers: \RegularExpression{}, \Pablo{} and the LLVM layer, each with their own intermediate representation
    80 (IR), transformation and compilation modules.
    81 %
    82 As we traverse the layers, the IR becomes significantly more complex as it begins to mirror the final machine code.
    83 %
    84 The \REParser{} validates and transforms the input \RegularExpression{} into an abstract syntax tree (AST).
    85 %
    86 The AST is a minimalistic representation that, unlike traditional \RegularExpression{}, is not converted into a NFA or DFA for further processing.
    87 %
    88 Instead, icGrep passes the AST into the transformation module, which includes a set of \RegularExpression{} specific optimization passes.
    89 %
    90 The initial \emph{Nullable} pass, determines whether the \RegularExpression{} contains any prefixes or suffixes that may be removed or
    91 modified whilst still providing the same number of matches as the original expression.
    92 %
    93 For example, ``\verb|a*bc+|'' is equivalent to ``\verb|bc|'' because the Kleene Star (Plus) operator matches zero (one) or more instances of a
    94 specific character.
    95 %
    96 The \emph{toUTF8} pass converts the characters in the input \RegularExpression{} into the equivalent expression(s) that represent the sequences
    97 of 8-bit code units necessary to identify the presence of a particular character.
    98 %
    99 Since some characters have multiple logically equivalent representations, such as \textcolor{red}{\textbf{????}}, this may produce nested sequences or alternations.
    100 %
    101 This is described in more detail in \S\ref{sec:Unicode:toUTF8}.
    102 %
    103 To alleviate this, the final \emph{Simplification} pass flattens nested sequences and alternations into their simplest legal form.
    104 %
    105 For example, ``\verb`a(b((c|d)|e))`'' would become ``\verb`ab(c|d|e)`'' and ``\verb`([0-9]{3,5}){3,5}`'', ``\verb`[0-9]{9,25}`''.
    106 %
    111 The \RegularExpression{} layer has two compilers: the \CodeUnit{} and \RegularExpressionCompiler{}, both of which produce \Pablo{} IR.
    112 %
    113 Recall that the \Pablo{} layer assumes a transposed view of the input data.
    114 %
    115 The \emph{\CodeUnitCompiler{}} transforms the input code unit classes, either extracted from the \RegularExpression{} or produced by the
    116 \emph{toUTF8} transformation, into a series of bit stream equations.
    117 %
    118 The \emph{\RegularExpressionCompiler{}} assumes that these have been calculated and transforms the \RegularExpression{} AST into
    119 a sequence of instructions.
    120 %
    121 For instance, it would convert any alternations into a sequence of calculations that are merged with \verb|OR|s.
    122 %
    123 The results of these passes are combined and transformed through a series of typical optimization passes, including dead code elimination
    124 (DCE), common subexpression elimination (CSE), and constant folding.
    125 %
    126 These are necessary at this stage because the \RegularExpression{} AST may include common subsequences that are costly to recognize in
    127 that form.
    128 %
    129 Similarly, to keep the \CodeUnitCompiler{} a linear time function, it may introduce redundant IR instructions as it applies traditional Boolean
    130 algebra transformations, such as de Morgan's law, to the computed streams.
    131 %
    132 An intended side-effect of these passes is that they eliminate the need to analyze the data-dependencies inherent in the carry-bit logic,
    133 which is necessary for some \Pablo{} instructions but problematic for optimizers to reason about non-conservatively.
    134 %
    135 The \PabloCompiler{} then converts the \Pablo{} IR into LLVM IR.
    136 %
    137 This is a relatively straightforward conversion:
    138 %
    139 the only complexities it introduces is the generation of Phi nodes, linking of statically-compiled functions, and assignment of carry variables.
    140 %
    141 It produces the dynamically-generated match function used by the icGrep.
    143 \begin{figure}[h] \label{fig:execution}
    144 \begin{center}
    145 \tikzstyle{block} = [rectangle, draw, text width=15em, text centered, minimum height=1.75em, thick, font=\ttfamily\bfseries, node distance=3.5em]
    146 \tikzstyle{line} = [draw, ->, line width=1.4pt]
    147 \tikzstyle{seperator} = [draw, line width=0.125em, dashed]
    148 \tikzset{block/.append style={execute at begin node=\footnotesize}}   
    149 \begin{tikzpicture}[node distance=3cm, auto, >=stealth]
    151     % Place nodes
    152     \node [draw=none] (InputData) {Input Data};
    153     \node [block, below of=InputData] (S2P) {S2P};
    154     \node [block, below of=S2P] (RequiredStreamsGenerator) {Required Streams Generator};
    155     \node [block, below of=RequiredStreamsGenerator] (JITFunction) {JIT Function};
    156     \node [block, right of=JITFunction, node distance=20em] (NamedPropertyLibaray) {Named Property Library};
    157     \node [block, below of=JITFunction] (MatchScanner) {Match Scanner};
    158     \node [draw=none, below of=MatchScanner, node distance=3.5em] (OutputResult) {Output Result};
    160     % Draw edges
    161     \path [line] (InputData) -- (S2P);
    162     \path [line] (S2P) -- (RequiredStreamsGenerator);
    163     \path [line] (RequiredStreamsGenerator) -- (JITFunction);
    164     \path [line] (NamedPropertyLibaray) -- (JITFunction);
    165     \path [line] (JITFunction) -- (MatchScanner);
    166     \path [line] (MatchScanner) -- (OutputResult);
    168 \end{tikzpicture}
    170 \end{center}
    171 \caption{icGrep Execution Diagram.}
    172 \end{figure}
    174 As shown in Figure \ref{fig:execution}, icGrep takes the input data and transposed it into 8 parallel bit streams through S2P module.
    175 The required streams, e.g. line break stream, can then be generated using the 8 basis bits streams.
    176 The JIT function retrieves the 8 basis bits and the required streams from their memory addresses and starts the matching process.
    177 Named Property Library that includes all the predefined Unicode categories is installed into JIT function and can be called during the matching process.
    178 JIT function returns one bitstream that marks all the matching positions.
    179 A match scanner will scan through this bitstream and calculate the total counts or write the context of each match position.
    181 We can also apply a pipeline parallelism strategy to further speed up the process of icGrep.
    182 S2P and Required Streams Generator can be process in a separate thread and start even before the dynamic compilation starts.
    183 The output of S2P and Required Streams Generator, that is the 8 basis bits streams and the required streams,
    184 needs to be stored in a shared memory space so that the JIT function can read from it.
    185 To be more efficient of memory space usage, we only allocate limit amount of space for the shared data.
    186 When each chunk of the shared space is filled up with the bitstream data,
    187 the thread will start writing to the first chunk if it is released by JIT function.
    188 Otherwise, it will wait for JIT function until it finishes processing that chunk.
    189 Therefore, the performance is depended on the slowest thread.
    190 In the case that the cost of transposition and required stream generation is more than the matching process,
    191 we can further divide up the work and assign two threads for S2P and Required Streams Generator.
Note: See TracChangeset for help on using the changeset viewer.