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Abstract
XML, a widely used format, plays an important role in today’s
web services and databases. But the performance and energy ef-
ficiency of XML parsing is often considered a problem. As multi-
core architectures become the mainstream, parallelizing the XML
parser offers an attractive way to achieve better performance and
reduce energy consumption. However, XML parsing, well known as
a sequential process, poses tough problems for parallel program-
ming. Although data parallelism has been applied to XML parsers
in some previous works, the overhead is fairly high. This paper
presents a pipeline parallelizing method for Parabix, a high per-
formance XML parser based on parallel bitstream technique. Its
unique structure allows us to take advantage of the inherent ef-
ficiency of pipeline parallelism. Experimental results show more
than a 2X speedup compared with the sequential version. It is also
argued that this method of pipeline parallelism could be easily ap-
plied to other applications based on parallel bitstream techniques.
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1. Introduction
Extensible Markup Language(XML) is widely used for web appli-
cations and services. Parsing of XML may be a significant factor af-
fecting the response time and even the throughput. XML also plays
an important role in databases. Enterprises keep large amounts of
business critical data permanently in XML format. However, those
databases may not provide the same high performance character-
istics as relational data processing because processing of XML
requires parsing of XML documents which can be very CPU-
intensive [9].

CPU-intensive applications are able to benefit from multicore
systems by dividing the work to run on different cores. The growing
prevalence of multicore systems motivates the investigation of par-
allelizing XML parsers. However, parallelizing programs is chal-
lenging because the gains from parallel execution can be overshad-
owed by the cost of communication and synchronization. Paral-
lelizing XML parsing software is further complicated because it is
sequential in nature.

There are three basic parallelizing methods. Task parallelism
refers to parallel executions where the output of each task never
reaches the input of the other. Task parallelizing XML parsers can
be easily achieved by processing different files on different cores at
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the same time. Unfortunately, the files used with either web services
or databases are often large requiring fast parsing on a single file.

Data parallelism refers to the partitioning of data into several
chunks which are each processed in parallel. Data parallelism is
well-suited to multicore systems when there are no dependencies
between each partition. Otherwise, it can introduce excessive com-
munication overheads and potential hazards. The nature of XML
files makes them hard to partition nicely for data parallelism. Sev-
eral approaches have been used to address this problem. A prepars-
ing phase has been proposed to help partition the XML document
[8]. The goal of this preparsing is to determine the tree structure of
the XML document so that it can be used to guide the full parsing in
the next phase. Other methods such as overlapping and speculation
have also been used for data parallel processing [7].

Pipeline parallelism is appropriate when the computation can
be divided into multiple stages such that data naturally flows from
one stage to another and synchronization is needed only at stage
interface. Compared to data parallelism, it offers reduced latency,
reduced buffering and less communication [6]. But it is often hard
to implement well, due to problems of synchronization and bal-
ancing the load between stages. However, previous work presented
a high performance XML parser, Parabix, using parallel bitstream
techniques [2, 3]. Its unique structure makes it easy to separate the
parsing into several passes. This multipass structure makes it suit-
able to apply pipeline parallelism on multicore systems.

This paper presents a pipelining strategy for Parabix based on
the observation of data dependencies and analysis of the charac-
teristics of each pass. The resulting performance and energy con-
sumption is compared with sequential Parabix and other sequential
XML parsers that have been widely used. The generalization of this
pipelining strategy to other applications based on parallel bitstream
techniques is described.

2. Background
2.1 XML
Extensible Markup Language (XML) is a simple text format de-
rived from SGML, officially adopted by W3C as a standard in 1998
[1]. It is essentially a set of rules for encoding documents or data in
a human readable form. For example, a typical XML file could be:

<?xml version="1.0"?>
<shipping>
<shipTo country="Canada">
<name> Alice </name>
<address> XXX </address>

</shipTo>
...

</shipping>

Figure 1. Simple XML Document



2.2 XML Well-Formedness Checking
The XML specification defines an XML document as a text which
is well-formed. That is, it satisfies a list of syntax rules provided
in the specification. If a document are correctly formed and con-
form to all the well-formedness rules, then it is considered as well
formed.

XML well-formedness checking application is evaluated for
each XML parsing technology. The decision to perform XML well-
formedness checking for this study is based on the following ratio-
nal. First, each XML parser must provide well-formedness check-
ing functionality. Secondly, this functionality meets the minimum
requirement of an XML document being readable by computers
and avoids any additional costs due to non-parsing related compu-
tation.

2.3 Traditional XML Parsers
Traditional XML parsers such as Expat and Xerces process XML
one byte at a time. They parse a source document serially, from the
first to the last byte of the source file. Each character of the source
text is examined in turn to distinguish between the XML-specific
markup, such as an opening angle bracket ‘<’, and the content
held between markups. This method creates a lot of branches in
the program. In fact, Xerces can execute as many as 13 branches
per byte it processed.

Both Expat and Xerces-C are C/C++ based and open-source.
Expat was originally released in 1998; it is currently used in
Mozilla Firefox and Open Office [4]. Xerces-C was released in
1999 and is the foundation of the Apache XML project [5].

2.4 Parabix: SIMD-based XML Parser
Parabix is a SIMD-based parallel bitstream XML parser. It first
transposes the input byte stream into eight parallel bitstreams called
basis bitstreams. Then it calculates all the markup item streams
based on those basis bitstreams using SIMD bitwise logic instruc-
tions. A markup item streams is simply a sequence of 0s and 1s,
where there is one such bit in the stream for each markup item in a
source data stream. As shown in Figure 2, M0 is left angle stream
shifted by 1. Given all the markup item streams, parsing becomes
a series of parallel bit scans. For example, in Figure 2, the first step
of parsing the start tag is to scan through the tag names using M0.
On a little endian byte order machine, parallel bit scan is imple-
mented using addition and logic operations [2]. M1 gives the result
of scanning.

source data <t1>abc</t1><tag2/>
Name = [0-9a-z] .11.111..11..1111..
M0 = [<] >> 1 .1......1....1.....
M1 = scanThru(M0, Name) ...1....1........1.

Figure 2. Partial Start Tag Parsing

Figure 3 shows the results of the overall performance for XML
well-formedness checking evaluated as CPU cycles per input bytes.
Parabix is 2 to 7 times faster than traditional parsers.

Parabix exploits the data parallelism via SIMD instructions. The
goal of this study is to further improve the performance using chip-
multiprocessors.

3. Parallelizing Strategy
3.1 Pipelining Parallelism
The typical approach to parallelizing software (data parallelism) re-
quires nearly independent data, which is a difficult task for dividing
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Figure 3. Processing Time (y-axis: CPU cycles per byte)

XML data. A simple division determined by the segment size can
easily make most of the segments illegal according to the parsing
rules while the data as a whole is legal. For example, Figure 1 is a
legal XML file, but Figure 4, which contains a incomplete start tag
will not be considered as a legal piece.

country="Canada">
<name> Alice </name>
<address> XXX </address>

</shipTo>

Figure 4. XML Document Segment

Therefore, instead of dividing the data into segments and as-
signing different data segments to different cores, we divide the
process into several stages and let each core work with one single
stage. As shown in Figure 5, data dependencies exist between the
same segment processed in different stages. Take the first segment
S1 as an example, S1-B depends on S1-A, S1-C depends on S1-B
and S1-D denpends on S1-C. There are also dependencies between
different segments processed in the same stages. For example, S2-
A depends on S1-A, S3-A depends on S2-A and so on so forth.
However, there is no dependency between different segments pro-
cessed in different stages, such as S1-A and S2-B. Thus, using a
pipeline strategy shown in Figure 6 ensures that at any time slice,
there is no dependency between each thread.

3.2 Work Division
Ideally, no thread will stall when all of them process a given
segment with the same speed, that is, for example, when T1 finishes
with S6, T2 should complete with S5, T3 should complete with
S4 and T4 should complete with S3. However, it is difficult to
evenly divide up the work. As shown in Figure 7, Parabix can
be separated into eleven passes. The time consumed by each pass
could be different depending on the characteristics of the test file.

On a quad core machine, we divide the eleven passes into
four stages based on the work distribution calculated by analyzing
the sequential Parabix (Figure 7). StageA contains pass one to
pass three, which are fill buffer, s2p and classify bytes. StageB
contains pass four to pass seven, which are validate u8, gen scope,
parse CtCDPI and parse ref. StageC contains pass eight to pass
ten, which are parse tag, validate name and gen check. StageD
contains the last pass, postprocessing. Table 1 shows the time
consumed on each stage. Overhead will be introduced when each
stage is running on a different core due to the resource contention
and data migration, which will be discussed in the next section.
Therefore, the processing time of each stage on a separate thread
might be more than what is shown in the table.



Data Structures
srcbuf basis bits u8 lex scope ctCDPI ref tag xml names check streams

StageA fill buffer write
s2p read write

classify bytes read write
StageB validate u8 read write

gen scope read write
parse CtCDPI read read write write

parse ref read read read write
StageC parse tag read read read write

validate name read read read read read write write
gen check read read read read read read write

StageD postprocessing read read read read read

Table 2. Relationship between Each Pass and Data Structures

S1‐AStage A S2‐A S3‐A S4‐A S5‐A S6‐A

S1‐BStage B S2‐B S3‐B S4‐B S5‐B S6‐B

S1‐CStage C S2‐C S3‐C S4‐C S5‐C S6‐C

S1‐DStage D S2‐D S3‐D S4‐D S5‐D S6‐D

Seg1 Seg2 Seg3 Seg4 Seg5 Seg6

Figure 5. Data Dependency
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Figure 6. Pipelining Strategy

dew jaw roads po soap
stageA 1.981 1.973 1.967 1.97 1.97
stageB 1.161 1.403 0.895 1.724 0.877
stageC 1.582 1.601 2.383 2.141 2.451
stageD 0.855 0.928 1.28 1.704 1.818

Table 1. Time Consumed on Each Stage under Sequential Process-
ing (CPU cycles per byte)
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3.3 Circular Queue
The interface between stages is implemented using a circular array,
where each entry consists of all ten data structures for one seg-
ment as listed in Table 2. Each thread keeps an index of the array
(IN ), which is compared with the index (IN−1) kept by its previous
thread before processing the segment. If IN is smaller than IN−1,
thread N can start processing segment IN , otherwise the thread
keeps reading IN−1 until IN−1 is larger than IN . The time con-
sumed by continuously loading the value of IN−1 and comparing
it with IN will be later referred as stall time. When a thread finishes
processing the segment, it increases the index by one.

This algorithm has three basic sources of overhead. The first one
is data migration. As shown in Table 2, many of the data structures
are needed by more than one stage and hence processed by more
than one core. Therefore, those data structures have to be loaded



several times into different caches. The second overhead comes
from maintaining the cache coherency of those data structures. Ta-
ble 2 shows the relationship between each pass and data structures.
Fortunately, all of the data structures except check streams are writ-
ten only once when they are brought into the cache the first time.
Further optimization could be done by compressing some of the
data structures as well as restructuring check streams such that it
is written only by pass gen check. The third overhead is caused by
the control data (index). Since IN is shared between thread N and
thread N+1, each time thread N modifying IN will cause cache in-
validation and when thread N+1 tries to read it, it generates a cache
miss.

4. Evaluation
4.1 Test Data and Platform
Distinguishing between “document-oriented” XML and “data-
oriented” XML is a popular way to describe the two basic classes of
XML documents. Data-oriented XML is used as an interchange for-
mat. Document-oriented XML is used to impose structure on infor-
mation that rarely fits neatly into a relational database–particularly
information intended for publishing. Data-oriented XML are char-
acterized by a higher markup density. Markup density is defined
as the ratio of the total markup contained within an XML file to
the total XML document size. This metric may have substantial
influence on the performance of XML parsing. As such we choose
workloads with distinguishable markup densities. Table 3 shows
the document characteristics of the XML instances selected for this
performance study.

All the experiments are run on a quad core machine with Linux
kernel 2.6.35. Table 4 gives the hardware description of the ma-
chine selected.

Processor Intel Sandybridge i5-2300 (2.80GHz)
L1 Cache 4 X 32KB I-Cache 2 X 32KB D-Cache
L2 Cache 4 X 256KB
L3 Cache 6-MB

Front Side Bus 1333 MHz
Memory 6GB DDDR

Max TDP 95W

Table 4. Machine

4.2 Parameters
4.2.1 Segment Size
Increasing the segment size reduces the synchronization overhead.
As shown in Figure 8, the processing time drops dramatically
as the segment size goes from 128 bytes to 2KB. However, the
performance cease to improve, actually slightly degrades when
segment size is larger than 16KB because of cache contention.
In real applications, we would like to use as little memory as
possible without hurting much of the performance. The rest of the
experiments are run using segment size 16KB.

4.2.2 Circular Array Size
When the circular array size C is smaller than the number of
threads, only C threads will be able to do useful work at the same
time. As shown in Figure 9, when there are only two entries, the
performance is even worse than the sequential Parabix. When the
circular array size is larger than number of threads, increasing the
size of the circular array allows threads to be pushed deeper into
the queue. Then if one thread runs faster than the following thread,
it has more time to process before it must stop and wait. To some
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Figure 9. Processing Time with Different Circular Array Size (x
axis: number of entries, y axis: CPU cycles per byte)

extent, this can even out the variations of processing time. However,
a much larger array size won’t help because allocating a larger
memory area can degrade the performance and the processing time
is depending on the slowest stage in the pipeline not the fast one.
Therefore, the rest of the experiments are run using only 6 entries.

4.3 Load Balance
Figure 10 shows the work time and stall time of each thread with
different test files. As discussed in the previous section, the work
loads are not evenly divided. Therefore, the threads that process
faster have to wait for predecessors to finish and thus incur a
certain amount of stall time. The overhead introduced by data
migration and resource contention is 27% to 37%, calculated as
(overall worktime−sequential time)/sequential time. The
overhead introduced by synchronization is 15% to 50%, calculated
as overall stalltime/sequential time.

4.4 Performance
Figure 11 demonstrates the XML well-formedness checking per-
formance of the parallelized Parabix in comparison with the se-
quential version. The parallelized Parabix is more than 2 times
faster on the quad core machine. With the sequential Parabix, the
performance decreases as markup density of the test files increases.
However, the high density files are better balanced and consume
less stall time. Thus, it turns out that the processing time of each of
the test files is about the same at 2.7 cycles per byte.



File Name dew.xml jaw.xml roads.gml po.xml soap.xml
File Type document document data data data

File Size (kB) 66240 7343 11584 76450 2717
Markup Density 0.07 0.13 0.57 0.76 0.87

Table 3. XML Document Characteristics

0

0.5

1

1.5

2

2.5

3

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

dew.xml jaw.xml roads.gml po.xml soap.xml

stall time

work time

Figure 10. Processing Time of Each Thread (y axis: CPU cycles
per byte)

0
1
2
3
4
5
6
7
8

dew.xml jaw.xml roads.gml po.xml soap.xml

parallel sequential

Figure 11. Processing Time (y axis: CPU cycles per byte)

4.5 Power and Energy
Figure 12 shows the average power consumed by the parallelized
Parabix in comparison with the sequential version. By running
four threads and using all the cores at the same time, the power
consumption of the parallelized Parabix is much higher than the
sequential version. However, the energy consumption is about the
same, because the parallelized Parabix needs less processing time.
In fact, as shown in Figure 13, parsing soap.xml using parallelized
Parabix consumes less energy than using sequential Parabix.

4.6 Performance vs. Energy
Figure 14 shows the performance and energy consumption of se-
quential and parallelized Parabix as well as two other XML parsers,
Expat and Xerces. Parabix consumes 25% of the energy of Xerces
and Expat but with much better performance. Although the paral-
lelized Parabix consumes slightly higher average energy than the
sequential Parabix, it is more than 2 times faster.

5. Conclusion and Future Work
This paper studied and analyzed the structure of Parabix and
presents a pipeline strategy for XML parsing. Performance and
energy consumption are evaluated on a quad core machine and
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compared with the sequential Parabix as well as two other XML
parsers. The parallelized Parabix provides a 2X speedup over the
sequential version by using about the same amount of energy. It
also shows a substantially better performance and less energy con-
sumption compared with Xerces and Expat.

The presented parallelizing strategy can be applied to other se-
quential applications that share the same data dependency structure
as described for Parabix, especially for applications based on par-
allel bitstream technologies, where the bitstream processing can be
easily divided into different stages.

There are many possible optimizations for further research. For
example, the frequency of each core can be dynamically changed to
reduce stall time and save energy. A new thread can be created and
assigned to help thread one on the first stage since the first stage is
the bottleneck of the overall performance as shown in Figure 10.
However, only the first three passes (first stage) of Parabix are data
independent and hence can be processed by multiple threads at the
same time. Therefore, this method might not work for a different
work division.

Other future research includes porting the parallelized Parabix
to different architectures (e.g. more cores, NUMA, asymmetric
machine) and dynamically assigning the workload by sampling the
performance at run time instead of predefining work division based
on analysis of the sequential Parabix.
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