
Parallel Scanning with Bitstream Addition: An
XML Case Study

Robert D. Cameron, Ehsan Amiri, Kenneth S. Herdy, Dan Lin, Thomas C.
Shermer, and Fred P. Popowich

Simon Fraser University, Surrey, BC, Canada
{cameron, eamiri, ksherdy, lindanl, shermer, popowich}@cs.sfu.ca

Abstract. A parallel scanning method using the concept of bitstream
addition is introduced and studied in application to the problem of XML
parsing and well-formedness checking. On processors supporting W -bit
addition operations, the method can perform up to W finite state tran-
sitions per instruction. The method is based on the concept of parallel
bitstream technology, in which parallel streams of bits are formed such
that each stream comprises bits in one-to-one correspondence with the
character code units of a source data stream. Parsing routines are initially
prototyped in Python using its native support for unbounded integers
to represent arbitrary-length bitstreams. A compiler then translates the
Python code into low-level C-based implementations. These low-level im-
plementations take advantage of the SIMD (single-instruction multiple-
data) capabilities of commodity processors to yield a dramatic speed-up
over traditional alternatives employing byte-at-a-time parsing.

Keywords: SIMD text processing, parallel bitstreams, XML, parsing

1 Introduction

Although the finite state machine methods used in the scanning and parsing of
text streams is considered to be the hardest of the “13 dwarves” to parallelize
[1], parallel bitstream technology shows considerable promise for these types of
applications [3, 4]. In this approach, character streams are processed N positions
at a time using the N -bit SIMD registers commonly found on commodity pro-
cessors (e.g., 128-bit XMM registers on Intel/AMD chips). This is achieved by
first slicing the byte streams into eight separate basis bitstreams, one for each bit
position within the byte. These basis bitstreams are then combined with bitwise
logic and shifting operations to compute further parallel bit streams of interest,
such as the [<] bit stream marking the position of all opening angle brackets in
an XML document.

Using these techniques as well as the bit scan instructions also available on
commodity processors, the Parabix 1 XML parser was shown to considerably
accelerate XML parsing in comparison with conventional byte-at-a-time parsers
in applications such as statistics gathering [4] and as GML to SVG conversion
[6]. Other efforts to accelerate XML parsing include the use of custom XML



2 Cameron, Amiri, Herdy, Lin, Shermer and Popowich

chips [8], FPGAs [5], careful coding and schema-based processing[7] and multi-
thread/multicore speedups based on data parallelism[9, 10].

In this paper, we further increase the parallelism in our methods by introduc-
ing a new parallel scanning primitive using bitstream addition. In essence, this
primitive replaces the sequential bit scan operations underlying Parabix 1 with a
new approach that independently advances multiple marker bits in parallel using
simple addition and logic operations. This paper documents the technique and
evaluates it in application to the problem of XML parsing and well-formedness
checking.

Section 2 reviews the basics of parallel bitstream technology and introduces
our new parallel scanning primitive. Section 3 goes on to show how this prim-
itive may be used in XML scanning and parsing, while Section 4 discusses the
construction of a complete XML well-formedness checker based on these tech-
niques. Section 5 then briefly describes the compiler technology used to generate
the low level code for our approach. A performance study in Section 6 shows
that the new Parabix 2 parser is dramatically faster than traditional byte-at-a-
time parsers as well as the original Parabix 1 parser, particularly for dense XML
markup. Section 7 concludes the paper.

2 The Parallel Bitstream Method

2.1 Fundamentals

A bitstream is simply a sequence of 0s and 1s, where there is one such bit in
the bitstream for each character in a source data stream. For parsing, and other
text processing tasks, we need to consider multiple properties of characters at
different stages during the parsing process. A bitstream can be associated with
each of these properties, and hence there will be multiple (parallel) bitstreams
associated with a source data stream of characters.

The starting point for bitstream methods are basis bitstreams and their use
in determining character-class bitstreams. The kth basis bitstream Bk consists

source data C ----173942---654----1----49731----321--

B7 .......................................

B6 .......................................

B5 111111111111111111111111111111111111111

B4 ....111111...111....1....11111....111..

B3 1111...1..111...1111.1111.1...1111...11

B2 1111.1..1.1111111111.11111.1..1111...11

B1 .....11..1...1.............11.....11...

B0 11111111..111.1.111111111.111111111.111

[0-9] ....111111...111....1....11111....111..

Fig. 1. Basis and Character-Class Bitstreams



Parallel Scanning with Bitstream Addition 3

of the kth bit (0-based, starting at the the least significant bit) of each character
in the source data stream; thus each Bk is dependent on the encoding of the
source characters (ASCII, UTF-8, UTF-16, etc.). Given these basis bitstreams,
it is then possible to combine them using bitwise logic in order to compute
character-class bitstreams, that is, streams that identify the positions at which
characters belonging to a particular class occur. For example, the character class
bitstream D =[0-9] marks with 1s the positions at which decimal digits occur.
These bitstreams are illustrated in Figure 1, for an example source data stream
consisting of digits and hyphens. This figure also illustrates some of our conven-
tions for figures: the left triangle C after “source data” indicates that all streams
are read from right to left (i.e., they are in little-endian notation). We also use
hyphens in the input stream represent any character that is not relevant to a
character class under consideration, so that relevant characters stand out. Fur-
thermore, the 0 bits in the bitstreams are represented by periods, so that the 1
bits stand out.

Transposition of source data to basis bitstreams and calculation of character-
class streams in this way is an overhead on parallel bit stream applications, in
general. However, using the SIMD capabilities of current commodity processors,
these operations are fast, with an amortized overhead of about 1 CPU cycle per
byte for transposition and less than 1 CPU cycle per byte for all the character
classes needed for XML parsing [4].

Beyond the bitwise logic needed for character class determination, we also
need upshifting to deal with sequential combination. The upshift n(S) of a bit-
stream S is obtained by shifting the bits in S one position forward, then placing
a 0 bit in the starting position of the bitstream; n is meant to be mnemonic of
“next”. In n(S), the last bit of S may be eliminated or retained for error-testing
purposes.

2.2 A Parallel Scanning Primitive

In this section, we introduce the principal new feature of the paper, a parallel
scanning method based on bitstream addition. Key to this method is the con-
cept of marker bitstreams. Marker bitstreams are used to represent positions of
interest in the scanning or parsing of a source data stream. The appearance of
a 1 at a position in a marker bitstream could, for example, denote the starting
position of an XML tag in the data stream. In general, the set of bit positions
in a marker bitstream may be considered to be the current parsing positions of
multiple parses taking place in parallel throughout the source data stream.

Figure 2 illustrates the basic concept underlying parallel parsing with bit-
stream addition. All streams are shown in little-endian representation, with
streams reading from right-to-left. The first row shows a source data stream that
includes several spans of digits, together with other nondigit characters shown as
hyphens. The second row specifies the parsing problem using a marker bitstream
M0 to mark four initial marker positions. In three instances, these markers are
at the beginning (i.e., little end) of a span, while one is in the middle of a span.



4 Cameron, Amiri, Herdy, Lin, Shermer and Popowich

The parallel parsing task is to move each of the four markers forward (to the left)
through the corresponding spans of digits to the immediately following positions.

source data C ----173942---654----1----49731----321--

M0 .........1.....1....1......1...........

D =[0-9] ....111111...111....1....11111....111..

M0 + D ...1........1......1....1...11....111..

M1 = (M0 + D) ∧ ¬D ...1........1......1....1..............

Fig. 2. Parallel Scan Using Bitstream Addition and Mask

The third row of Figure 2 shows the derived character-class bitstream D
identifying positions of all digits in the source stream. The fourth row then
illustrates the key concept: marker movement is achieved by binary addition of
the marker and character class bitstreams. As a marker 1 bit is combined using
binary addition to a span of 1s, each 1 in the span becomes 0, generating a carry
to add to the next position to the left. For each such span, the process terminates
at the left end of the span, generating a 1 bit in the immediately following
position. These generated 1 bits represent the moved marker bits. However, the
result of the addition also produces some additional bits that are not involved
in the scan operation. These are easily removed as shown in the fifth row, by
applying bitwise logic to mask off any bits from the digit bitstream; these can
never be marker positions resulting from a scan. The addition and masking
technique allows matching of the regular expression [0-9]* for any reasonable
(conflict-free) set of initial markers specified in M0.

In the remainder of this paper, the notation s(M, C) denotes the operation
to scan from an initial set of marker positions M through the spans of characters
belonging to a character class C found at each position.

s(M,C) = (M + C) ∧ ¬C

3 XML Scanning and Parsing

We now consider how the parallel scanning primitive can be applied to the follow-
ing problems in scanning and parsing of XML structures: (1) parallel scanning of
XML decimal character references, and (2) parallel parsing of XML start tags.
The grammar of these structures is shown in Figure 3.

Figure 4 shows the parallel parsing of decimal references together with er-
ror checking. For clarity, the streams are now shown in left-to-right order as
indicated by the B symbol. The source data includes four instances of poten-
tial decimal references beginning with the & character. Of these, only the first
one is legal according to the decimal reference syntax, the other three instances



Parallel Scanning with Bitstream Addition 5

DecRef ::= ’&#’ Digit+ ’;’
Digit ::= [0-9]

STag ::= ’<’ Name (W Attribute)* W? ’>’

Attribute ::= Name W? ’=’ W? AttValue
AttValue ::= ( ‘"’ [^<"]* ‘"’) | (“’” [^<’]* “’”)

W ::= (\x20 | \x9 | \xD | \xA)+

Fig. 3. XML Grammar: Decimal Character References and Start Tags

are in error. These references may be parsed in parallel as follows. The start-
ing marker bitstream M0 is formed from the [&] character-class bitstream as
shown in the second row. The next row shows the result of the marker advance
operation n(M0) to produce the new marker bitstream M1. At this point, the
grammar requires a hash mark, so the first error bitstream E0 is formed using
a bitwise “and” operation combined with negation, to indicate violations of this
condition. Marker bitstream M2 is then defined as those positions immediately
following any M1 positions not in error. In the following row, the condition that
at least one digit is required is checked to produce error bitstream E1. A parallel
scan operation is then applied through the digit sequences as shown in the next
row to produce marker bitstream M3. The final error bitstream E2 is produced
to identify any references without a closing semicolon. In the penultimate row,
the final marker bitstream M4 marks the positions of all fully-checked decimal
references, while the last row defines a unified error bitstream E indicating the
positions of all detected errors.

Initialization of marker streams may be achieved in various ways, dependent
on the task at hand. In the XML parsing context, we rely on an important
property of well-formed XML: after an initial filtering pass to identify XML
comments, processing instructions and CDATA sections, every remaining < in
the file must be the initial character of a start, end or empty element tag, and
every remaining & must be the initial character of a general entity or character

source data B -&#978;-&9;--&#;--&#13!-

M0 .1......1....1....1.....

M1= n(M0) ..1......1....1....1....

E0 = M1 ∧ ¬[#] .........1..............

M2= n(M1 ∧ ¬E0) ...1...........1....1...

E1 = M2 ∧ ¬D ...............1........

M3= s(M2 ∧ ¬E1, D) ......1...............1.
E2 = M3 ∧ ¬[;] ......................1.

M4= M3 ∧ ¬E2 ......1.................

E = E0 |E1 |E2 .........1.....1......1.

Fig. 4. Parsing Decimal References



6 Cameron, Amiri, Herdy, Lin, Shermer and Popowich

reference. These assumptions permit easy creation of marker bitstreams for XML
tags and XML references.

The parsing of XML start tags is a richer problem, involving sequential struc-
ture of attribute-value pairs as shown in Figure 3. Using the bitstream addition
technique, our method is to start with the opening angle bracket of all tags as
the initial marker bitstream for parsing the tags in parallel, advance through the
element name and then use an iterative process to move through attribute-value
pairs.

Figure 5 illustrates the parallel parsing of three XML start tags. The figure
omits determination of error bitstreams, processing of single-quoted attribute
values and handling of empty element tags, for simplicity. In this figure, the
first four rows show the source data and three character class bitstreams: N for
characters permitted in XML names, W for whitespace characters, and Q for
characters permitted within a double-quoted attribute value string.

source data B --<e a= "137">---<el2 a="17" a2="3379">---<x>--

N = name chars 11.1.1...111..111.111.1..11..11..1111..111.1.11

W = white space ....1..1.............1......1..................

Q = ¬["<] 11.11111.111.1111.111111.11.1111.1111.1111.1111

M0 ..1..............1........................1....

M1 = n(M0) ...1..............1........................1...

M0,7 = s(M1, N) ....1................1......................1..

M0,8 = s(M0,7, W ) ∧ ¬[>] .....1................1........................

M1,1 = s(M0,8, N) ......1................1.......................

M1,2 = s(M1,1, W )∧[=] ......1................1.......................

M1,3 = n(M1,2) .......1................1......................

M1,4 = s(M1,3, W )∧["] ........1...............1......................

M1,5 = n(M1,4) .........1...............1.....................

M1,6 = s(M1,5, Q)∧["] ............1..............1...................

M1,7 = n(M1,6) .............1..............1..................

M1,8 = s(M1,7, W ) ∧ ¬[>] .............................1.................

M2,1 = s(M1,8, N) ...............................1...............

M2,2 = s(M2,1, W )∧[=] ...............................1...............

M2,3 = n(M2,2) ................................1..............

M2,4 = s(M2,3, W )∧["] ................................1..............

M2,5 = n(M2,4) .................................1.............

M2,6 = s(M2,5, Q)∧["] .....................................1.........

M2,7 = n(M2,6) ......................................1........

M2,8 = s(M2,7, W ) ∧ ¬[>] ...............................................

Fig. 5. Start Tag Parsing



Parallel Scanning with Bitstream Addition 7

The parsing process is illustrated in the remaining rows of the figure. Each
successive row shows the set of parsing markers as they advance in parallel using
bitwise logic and addition. Overall, the sets of marker transitions can be divided
into three groups.

The first group M0 through M0,8 shows the initiation of parsing for each of
the tags through the opening angle brackets and the element names, up to the
first attribute name, if present. Note that there are no attribute names in the
final tag shown, so the corresponding marker becomes zeroed out at the closing
angle bracket. Since M0,8 is not all 0s, the parsing continues.

The second group of marker transitions M1,1 through M1,8 deal with the
parallel parsing of the first attribute-value pair of the remaining tags. After these
operations, there are no more attributes in the first tag, so its corresponding
marker becomes zeroed out. However, M1,8 is not all 0s, as the second tag still
has an unparsed attribute-value pair. Thus, the parsing continues.

The third group of marker transitions M2,1 through M2,8 deal with the pars-
ing of the second attribute-value pair of this tag. The final transition to M2,8

shows the zeroing out of all remaining markers once two iterations of attribute-
value processing have taken place. Since M2,8 is all 0s, start tag parsing stops.

The implementation of start tag processing uses a while loop that terminates
when the set of active markers becomes zero, i.e. when some Mk,8 = 0. Consid-
ered as an iteration over unbounded bitstreams, all start tags in the document
are processed in parallel, using a number of iterations equal to the maximum
number of attribute-value pairs in any one tag in the document. However, in
block-by-block processing, the cost of iteration is considerably reduced; the it-
eration for each block only requires as many steps as there are attribute-value
pairs overlapping the block.

Following the pattern shown here, the remaining syntactic features of XML
markup can similarly be parsed with bitstream based methods. One complication
is that the parsing of comments, CDATA sections and processing instructions
must be performed first to determine those regions of text within which ordinary
XML markups are not parsed (i.e., within each of these types of construct. This is
handled by first parsing these structures and then forming a mask bitstream, that
is, a stream that identifies spans of text to be excluded from parsing (comment
and CDATA interiors, parameter text to processing instructions).

4 XML Well-Formedness

In this section, we consider the full application of the parsing techniques of the
previous section to the problem of XML well-formedness checking [2]. We look
not only at the question of well-formedness, but also at the identification of error
positions in documents that are not well-formed.

Most of the requirements of XML well-formedness checking can be imple-
mented using two particular types of computed bitstream: error bitstreams, in-
troduced in the previous section, and error-check bitstreams. Recall that an error
bitstream stream is a stream marking the location of definite errors in accordance



8 Cameron, Amiri, Herdy, Lin, Shermer and Popowich

with a particular requirement. For example, the E0, E1, and E2 bitstreams as
computed during parsing of decimal character references in Figure 4 are error
bitstreams. One bits mark definite errors and zero bits mark the absence of
an error. Thus the complete absence of errors according to the requirements
listed may be determined by forming the bitwise logical “or” of these bitstreams
and confirming that the resulting value is zero. An error check bitstream is one
that marks potential errors to be further checked in some fashion during post-
bitstream processing. An example is the bitstream marking the start positions
of CDATA sections. This is a useful information stream computed during bit-
stream processing to identify opening <![ sequences, but also marks positions
to subsequently check for the complete opening delimiter <![CDATA[ at each
position.

In typical documents, most of these error-check streams will be quite sparse
or even zero. Many error conditions could actually be fully implemented using
bitstream techniques, but at the cost of a number of additional logical and shift
operations. In general, the conditions are easier and more efficient to check one-
at-a-time using multibyte comparisons on the original source data stream. With
very sparse streams, it is very unlikely that multiple instances occur within any
given block, thus eliminating the benefit of parallel evaluation of the logic.

The requirement for name checking merits comment. XML names may use
a wide range of Unicode character values. It is too expensive to check every
instance of an XML name against the full range of possible values. However, it
is possible and inexpensive to use parallel bitstream techniques to verify that
any ASCII characters within a name are indeed legal name start characters or
name characters. Furthermore, the characters that may legally follow a name in
XML are confined to the ASCII range. This makes it useful to define a name
scan character class to include all the legal ASCII characters for names as well
as all non-ASCII characters. A namecheck character class bitstream will then
be defined to identify non-ASCII characters found within namescans. In most
documents this bitstream will be all 0s; even in documents with substantial
internationalized content, the tag and attribute names used to define the doc-
ument schema tend to be confined to the ASCII repertoire. In the case that
this bitstream is nonempty, the positions of all 1 bits in this bitstream denote
characters that need to be individually validated.

Attribute names within a single XML start tag or empty element tag must
be unique. This requirement could be implemented using one of several different
approaches. Standard approaches include: sequential search, symbol lookup, and
Bloom filters [5].

Except for empty element tags, XML tags come in pairs with names that must
be matched. To discharge this requirement, we form a bitstream consisting of
the disjunction of three bitstreams formed during parsing: the bitstream marking
the positions of start or empty tags (which have a common initial structure),
the bitstream marking tags that end using the empty tag syntax (“/>”), and the
bitstream marking the occurrences of end tags. In post-bitstream processing,



Parallel Scanning with Bitstream Addition 9

we iterate through this computed bitstream and match tags using an iterative
stack-based approach.

An XML document consists of a single root element within which all others
contained; this constraint is also checked during post-bitstream processing. In
addition, we define the necessary ”miscellaneous” bitstreams for checking the
prolog and epilog material before and after the root element.

Overall, parallel bitstream techniques are well-suited to verification problems
such as XML well-formedness checking. Many of the character validation and
syntax checking requirements can be conveniently and efficiently implemented
using error streams. Other requirements are also supported by the computation
of error-check streams for simple post-bitstream processing or composite stream
over which iterative stack-based procedures can be defined for checking recursive
syntax. To assess the completness of our analysis, we have confirmed that our
implementations correctly handle all the well-formedness checks of the W3C
XML Conformance Test Suite.

5 Compilation to Block-Based Processing

While our Python implementation of the techniques described in the previ-
ous section works on unbounded bitstreams, a corresponding C implementation
needs to process an input stream in blocks of size equal to the SIMD register
width of the processor it runs on. So, to convert Python code into C, the key
question becomes how to transfer information from one block to the next.

The answer lies in the use of carry bits. The parallel scanning primitive uses
only addition and bitwise logic. The logic operations do not require information
flow accross block boundaries, so the information flow is entirely accounted by the
carry bits for addition. Carry bits also capture the information flow associated
with upshift operations, which move information forward one position in the
file. In essence, an upshift by one position for a bitstream is equivalent to the
addition of the stream to itself; the bit shifted out in an upshift is in this case
equivalent to the carry generated by the additon.

Properly determining, initializing and inserting carry bits into a block-by-
block implementation of parallel bitstream code is a task too tedious for manual
implementation. We have thus developed compiler technology to automatically
insert declarations, initializations and carry save/restore operations into appro-
priate locations when translating Python operations on unbounded bitstreams
into the equivalent low-level C code implemented on a block-by-block bases.
Our current compiler toolkit is capable of inserting carry logic using a variety
of strategies, including both simulated carry bit processing with SIMD registers,
as well as carry-flag processing using the processor general purpose registers and
ALU. Details are beyond the scope of this paper, but are described in the on-line
source code repository at parabix.costar.sfu.ca.



10 Cameron, Amiri, Herdy, Lin, Shermer and Popowich

6 Performance Results

In this section, we compare the performance of our xmlwf implementation us-
ing the Parabix 2 technology described above with several other implementa-
tions. These include the original xmlwf distributed as an example application of
the expat XML parser, implementations based on the widely used Xerces open
source parser using both SAX and DOM interfaces, and an implementation using
our prior Parabix 1 technology with bit scan operations.

Table 1 shows the document characteristics of the XML instances selected
for this performance study, including both document-oriented and data-oriented
XML files. The jawiki.xml and dewiki.xml XML files are document-oriented
XML instances of Wikimedia books, written in Japanese and German, respec-
tively. The remaining files are data-oriented. The roads.gml file is an instance
of Geography Markup Language (GML), a modeling language for geographic
information systems as well as an open interchange format for geographic trans-
actions on the Internet. The po.xml file is an example of purchase order data,
while the soap.xml file contains a large SOAP message. Markup density is de-
fined as the ratio of the total markup contained within an XML file to the total
XML document size. This metric is reported for each document.

File Name dewiki.xml jawiki.xml roads.gml po.xml soap.xml

File Type document document data data data

File Size (kB) 66240 7343 11584 76450 2717

Markup Item Count 406792 74882 280724 4634110 18004

Attribute Count 18808 3529 160416 463397 30001

Avg. Attribute Size 8 8 6 5 9

Markup Density 0.07 0.13 0.57 0.76 0.87

Table 1. XML Document Characteristics

Table 2 shows performance measurements for the various xmlwf implemen-
tations applied to the test suite. Measurements are made on a single core of an
Intel Core 2 system running a stock 64-bit Ubuntu 10.10 operating system, with
all applications compiled with llvm-gcc 4.4.5 optimization level 3. Measurements
are reported in CPU cycles per input byte of the XML data files in each case. The
first row shows the performance of the Xerces C parser using the tree-building
DOM interface. Note that the performance varies considerably depending on
markup density. Note also that the DOM tree construction overhead is substan-
tial and unnecessary for XML well-formedness checking. Using the event-based
SAX interface to Xerces gives much better results as shown in the second row.
The third row shows the best performance of our byte-at-a-time parsers, using
the original xmlwf based on expat.

The remaining rows of Table 2 show performance of parallel bitstream imple-
mentations, including post-bitstream processing. The first row shows the perfor-



Parallel Scanning with Bitstream Addition 11

mance of our Parabix 1 implementation using bit scan instructions. While show-
ing a substantial speed-up over the byte-at-a-time parsers in every case, note
also that the performance advantage increases with increasing markup density,
as expected. The last two rows show Parabix 2 implementations using different
carry-handling strategies, with the “simd” row referring to carry computations
performed with simulated calculation of propagated and generated carries using
SIMD operations, while the “adc64” row referring to an implementation directly
employing the processor carry flags and add-with-carry instructions on 64-bit
general registers. In both cases, the overall performance is impressive, with the
increased parallelism of parallel bit scans clearly paying off in improved perfor-
mance for dense markup.

Parser Class Parser dewiki.xml jawiki.xml roads.gml po.xml soap.xml

Byte Xerces (DOM) 37.921 40.559 72.78 105.497 125.929
at-a Xerces (SAX) 19.829 24.883 33.435 46.891 57.119

Time expat 12.639 16.535 32.717 42.982 51.468

Parallel Parabix1 8.313 9.335 13.345 16.136 19.047
Bit Parabix2 (simd) 6.103 6.445 8.034 8.685 9.53

Stream Parabix2 (adc64) 5.123 5.996 6.852 7.648 8.275

Table 2. Parser Performance (Cycles Per Byte)

7 Conclusion

In application to the problem of XML parsing and well-formedness checking,
the method of parallel parsing with bitstream addition is effective and efficient.
Using only bitstream addition and bitwise logic, it is possible to handle all of
the character validation, lexical recognition and parsing problems except for the
recursive aspects of start and end tag matching. Error checking is elegantly sup-
ported through the use of error streams that eliminate separate if-statements to
check for errors with each byte. The techniques are generally very efficient par-
ticularly when markup density is high. However, for some conditions that occur
rarely and/or require complex combinations of upshifting and logic, it may be
better to define simpler error-check streams that require limited postprocessing
using byte matching techniques.

The techniques have been implemented and assessed for present-day com-
modity processors employing current SIMD technology. As processor advances
see improved instruction sets and increases in width of SIMD registers, the
relative advantages of the techniques over traditional byte-at-a-time sequential
parsing methods is likely to increase substantially. Of particular benefit to this
method, instruction set modifications that provide for more convenient carry
propagation for long bitstream arithmetic would be most welcome.



12 Cameron, Amiri, Herdy, Lin, Shermer and Popowich

A significant challenge to the application of these techniques is the diffi-
culty of programming. The method of prototyping on unbounded bitstreams
has proven to be of significant value in our work. Using the prototyping lan-
guage as input to a bitstream compiler has also proven effective in generating
high-performance code. Nevertheless, direct programming with bitstreams is still
a specialized skill; our future research includes developing yet higher level tools
to generate efficient bitstream implementations from grammars, regular expres-
sions and other text processing formalisms.

References

1. Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from Berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Dec 2006.

2. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau.
Extensible markup language (XML) 1.0 (fifth edition). W3C Recommendation,
2008.

3. Robert D. Cameron. A Case Study in SIMD Text Processing with Parallel Bit
Streams. In ACM Symposium on Principles and Practice of Parallel Programming
(PPoPP), Salt Lake City, Utah, 2008.

4. Robert D. Cameron, Kenneth S. Herdy, and Dan Lin. High performance XML
parsing using parallel bit stream technology. In CASCON ’08: Proceedings of the
2008 conference of the center for advanced studies on collaborative research, pages
222–235, New York, NY, USA, 2008. ACM.

5. Zefu Dai, Nick Ni, and Jianwen Zhu. A 1 cycle-per-byte XML parsing accelerator.
In FPGA ’10: Proceedings of the 18th Annual ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, pages 199–208, New York, NY, USA,
2010. ACM.

6. Kenneth S. Herdy, David S. Burggraf, and Robert D. Cameron. High performance
GML to SVG transformation for the visual presentation of geographic data in
web-based mapping systems. In Proceedings of SVG Open 2008, August 2008.

7. M. G. Kostoulas, M. Matsa, N. Mendelsohn, E. Perkins, A. Heifets, and M. Mer-
caldi. XML Screamer: An Integrated Approach to High Performance XML Parsing,
Validation and Deserialization. In Proceedings of the 15th International Conference
on World Wide Web (WWW ’06), pages 93–102, 2006.

8. Michael Leventhal and Eric Lemoine. The XML chip at 6 years. In International
Symposium on Processing XML Efficiently: Overcoming Limits on Space, Time,
or Bandwidth, August 2009.

9. Bhavik Shah, Praveen Rao, Bongki Moon, and Mohan Rajagopalan. A data parallel
algorithm for XML DOM parsing. In Zohra Bellahsne, Ela Hunt, Michael Rys, and
Rainer Unland, editors, Database and XML Technologies, volume 5679 of Lecture
Notes in Computer Science, pages 75–90. Springer Berlin / Heidelberg, 2009.

10. Ying Zhang, Yinfei Pan, and Kenneth Chiu. Speculative p-DFAs for parallel XML
parsing. In High Performance Computing (HiPC), 2009 International Conference
on, pages 388–397, December 2009.


