
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Parabix : Boosting the Efficiency of Text Processing on

Commodity Processors
Paper ID 160

Abstract

In modern applications text files are employed widely. For example, XML files provide data storage in
human readable format and are ubiquitous in applications ranging from database systems to mobile phone
SDKs. Traditional text processing tools are built around a byte-at-a-time processing model where each
character token of a document is examined. The byte-at-a-time model is highly challenging for commodity
processors. It includes many unpredictable input-dependent branches which cause pipeline squashes and
stalls. Furthermore, typical text processing tools perform few operations per character and experience
high cache miss rates. Overall, parsing text in important domains like XML processing requires high
performance motivating the adoption of custom hardware solutions.

In this paper, we enable text processing applications to effectively use commodity processors. We intro-
duce Parabix (Parallel Bit Stream) technology, a software toolchain and execution framework that allows
applications to exploit modern SIMD instructions for high performance text processing. Parabix enables
the application developer to write constructs assuming unlimited SIMD data parallelism and Parabix’s bit
stream translator generates code based on machine specifics (e.g., SIMD register widths). The key in-
sight into efficient text processing in Parabix is the data organization. Parabix transposes the sequence of
character bytes into sets of 8 parallel bit streams which then enables us to operate on multiple characters
with bit-parallel SIMD operations. We demonstrate the features and efficiency of Parabix with an XML
parsing application. We evaluate the Parabix-based parser against two widely used XML parsers, Expat
and Apache’s Xerces. Parabix makes efficient use of intra-core SIMD hardware and demonstrates 2×–7×
speedup and 4× improvement in energy efficiency compared to the conventional parsers. We assess the
scalability of SIMD implementations across three generations of x86 processors including the new Sandy-
Bridge. We compare the 256-bit AVX technology in Intel SandyBridge versus the now legacy 128-bit SSE
technology and analyze the benefits and challenges of using the AVX extensions. Finally, we partition the
XML program into pipeline stages and demonstrate that thread-level parallelism enables the application
to exploits SIMD units scattered across the different cores and improves performance (2× on 4 cores) at
same energy levels as the single-thread version for the XML application.

1 Introduction
Classical Dennard voltage scaling enabled us to keep all of transistors afforded by Moore’s law active.

Dennard scaling reached its limits in 2005 and this has resulted in a rethink of the way general-purpose

processors are built: frequencies have remained stagnant over the last 5 years with the capability to boost

a core’s frequency only if other cores on the chip are shut off. Chip makers strive to achieve energy

efficient computing by operating at more optimal core frequencies and aim to increase performance with

1

0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

a larger number of cores. Unfortunately, given the limited levels of parallelism that can be found in

applications [4], it is not certain how many cores can be productively used in scaling our chips [11].

This is because exploiting parallelism across multiple cores tends to require heavy weight threads that are

difficult to manage and synchronize.

The desire to improve the overall efficiency of computing is pushing designers to explore customized

hardware [13, 23] that accelerate specific parts of an application while reducing the overheads present

in general-purpose processors. They seek to exploit the transistor bounty to provision many different

accelerators and keep only the accelerators needed for an application active while switching off others on

the chip to save power consumption. While promising, given the fast evolution of languages and software,

its hard to define a set of fixed-function hardware for commodity processors. Furthermore, the toolchain to

create such customized hardware is itself a hard research challenge. We believe that software, applications,

and runtime models themselves can be refactored to significantly improve the overall computing efficiency

of commodity processors.

In this paper we tackle the infamous “thirteenth dwarf” (parsers/finite state machines) that is considered

to be the hardest application class to parallelize [1]. We present Parabix, a novel execution framework

and software runtime environment that can be used to dramatically improve the efficiency of text process-

ing and parsing on commodity processors. Parabix transposes byte-oriented character data into parallel

bit streams and then exploits the SIMD extensions on commodity processors (SSE/AVX on x86, Neon

on ARM) to process hundreds of character positions in an input stream simultaneously. To transform

character-oriented data into bit streams Parabix exploits sophisticated SIMD instructions that enable data

elements to be packed into registers. This improves the overall cache behaviour of the application result-

ing in significantly fewer misses and better utilization. Parabix also dramatically reduces branches in the

parsing routines resulting in a more efficient pipeline and substantially improves register utilization which

minimizes energy wasted on data transfers.

We apply Parabix technology to the problem of XML parsing. XML is a standard of the web consor-

tium that provides a common framework for encoding and communicating data. XML provides critical

data storage for applications ranging from Office Open XML in Microsoft Office to NDFD XML of the

NOAA National Weather Service, from KML in Google Earth to Castor XML in the Martian Rovers.

2

0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Xerces Expat Parabix (singleParabix (multi-thread)
Perf 102.5243 112.3346 483.3707272 1100
Energy 170 151.3555 37.8451268 40.93

Processin 28.5786 26.0828 6.0616 2.665

0

50

100

150

200

0 500 1000 1500
A
ve
ra
ge
 E
ne

rg
y

Co
ns
um

pt
io
n
(J
ou

le
s)

Average Throughput (MB/s)

Expat

Parabix
single‐thread

Parabix
multi‐thread

Xerces

Figure 1: XML Parser Technology Energy vs. Performance

XML parsing efficiency is important for multiple application areas; in server workloads the key focus in

on overall transactions per second, while in applications for network switches and cell phones, latency

and energy are of paramount importance. Conventional software-based XML parsers have many ineffi-

ciencies including considerable branch misprediction penalties due to complex input-dependent branching

structures as well as poor use of caches and memory bandwidth due to byte-at-a-time processing. XML

ASIC chips have been around since early 2003, but typically lag behind CPUs in technology due to cost

constraints [16]. They also focus mainly on speeding up the parser computation itself and are limited by

the poor memory behaviour. Our focus is how much we can improve performance of the XML parser on

commodity processors with Parabix technology.

Figure 1 showcases the overall efficiency of our framework. The Parabix-XML parser improves the

performance and energy efficiency several-fold compared to widely-used software parsers, approaching

the performance of ASIC XML parsers [10, 16]. 1 Overall we make the following contributions:

1) We outline the Parabix architecture, tool chain and runtime environment and describe how it may

be used to produce efficient XML parser implementations on a variety of commodity processors. While

studied in the context of XML parsing, the Parabix framework can be widely applied to many problems

in text processing and parsing. We have released Parabix completely open source and are interested in

exploring the applications that can take advantage of our tool chain (http://parabix.costar.sfu.ca/).

2) We compare the Parabix XML parser against conventional parsers and assess the improvement in

1The actual energy consumption of the XML ASIC chips is not published by the companies.

3

0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

overall performance and energy efficiency on variety of hardware platforms. We are the first to compare

and contrast SSE/AVX extensions across multiple generation of Intel processors and show that there are

performance challenges when using newer generation SIMD extensions. We compare the ARM Neon

extensions against the x86 SIMD extensions and comment on the latency of SIMD operations.

3) Finally, building on the SIMD parallelism of Parabix technology, we multithread the Parabix XML

parser to to enable the different stages in the parser to exploit SIMD units across all the cores. This further

improves performance while maintaining the energy consumption constant with the sequential version.

The remainder of this paper is organized as follows. Section 2 presents background material on XML

parsing and provides insight into the inefficiency of traditional parsers. Section 3 describes the Parabix

architecture, tool chain and runtime environment. Section 4 describes the our design of an XML parser

based on the Parabix framework. Section 6 presents a detailed performance analysis of Parabix on a

Core-i3 system using hardware performance counters. Section 7 compares the performance and energy

efficiency of 128 bit SIMD extensions across three generations of Intel processors and includes a com-

parison with the ARM Cortex-A8 processor. Section 8 examines the Intel’s new 256-bit AVX technology

and comments on the benefits and challenges compared to the 128-bit SSE instructions. Finally, Section 9

looks at the multithreading of the Parabix XML parser which seeks to exploit the SIMD units scattered

across multiple cores.

2 Background

2.1 XML

Extensible Markup Language (XML) is a core technology standard of the World Wide Web Consortium

(W3C); it provides a common framework for encoding and communicating structured and semi-structured

information. XML can represent virtually any type of information (i.e., content) in a descriptive fashion.

XML markup encodes a description of an XML document’s storage layout and logical structure. Since

XML is intended to be human-readable, markup tags are often verbose by design [5]. For example, Figure

2 provides a standard product list encapsulated within an XML document. All content is highlighted in

bold. Anything that is not content is considered markup.

4

0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

<Products>
<Product ID="0001">

<ProductName Language="English">Widget</ProductName>
<ProductName Language="French">Bitoniau</ProductName>
<Company>ABC</Company>
<Price>$19.95</Price>

</Product>
</Products>

Figure 2: Sample XML Document

2.2 XML Parsers

Traditional XML parsers process an XML document sequentially, a single byte-at-a-time, from the first

to the last character in the source text. Each character is examined to distinguish between the XML-specific

markup, such as an left angle bracket ‘<’, and the content held within the document. The character that

the parser is currently interpreting is commonly referred to its cursor. As the parser moves its cursor

through the document, it alternates between markup scanning, validation, and content processing opera-

tions. In other words, traditional XML parsers operate as finite-state machines that use byte comparisons

to transition between data and metadata states. Each state transition indicates the context for subsequent

characters. Unfortunately, textual data tends to consist of variable-length items sequenced in generally

unpredictable patterns; thus any character could be a state transition until deemed otherwise.

A major disadvantage of the sequential byte-at-a-time approach to XML parsing is that processing an

XML document requires at least one conditional branch per byte of source text. For example, Xerces-C,

which forms the foundation for widely deployed the Apache XML project [12], uses a series of nested

switch statements and state-dependent flag tests to control the parsing logic of the program. Xerces’s

complex data dependent control flow requires between 6 – 13 branches per byte of XML input, depending

on the markup in the file (details in Section 6.2). Cache utilization is also significantly reduced due to

the manner in which markup and content must be scanned and buffered for future use. For instance,

Xerces incurs ∼100 L1 cache misses per kilobyte (kB) of XML data. In general, while microarchitectural

improvements may help the parser tide over some of these challenges (e.g., cache misses), the fundamental

data and control flow in the parsers are ill suited for commodity processors and experience significant

overhead.

5

0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3 The Parabix Framework
This section presents an overview of the SIMD-based parallel bit stream text processing framework,

Parabix. The framework has three components: (1) a unifying architectural view of text processing in

terms of parallel bit streams; (2) a tool chain for automating the generation of parallel bit stream code from

higher-level specifications, and (3) a run-time environment, which provides a portable SIMD programming

abstraction that is independent of the specific facilities available on particular target architectures.

3.1 Parallel Bit Streams

The fundamental difference between the Parabix framework and traditional text processing models is

in how Parabix represents the source data. Given a traditional byte-oriented text stream, Parabix first

transposes the text data to a transform domain consisting of 8 parallel bit streams, known as basis bit

streams. In essence, each basis bit stream bk represents the stream of k-th bit of each byte in the source

text. That is, the k-th bit of i-th byte in the source text is in the i-th (bit) position of the k-th basis bit

stream, bk. For example, in Figure 3, we show how the ASCII string “b7<A” is represented as 8 basis bit

streams, b0...7. The bits used to construct b7 have been highlighted in this example.

STRING b 7 < A
ASCII 01100010 00110111 00111100 01000001

b0 b1 b2 b3 b4 b5 b6 b7
0 1 1 0 0 0 1 0
0 0 1 1 0 1 1 1
0 0 1 1 1 1 0 0
0 1 0 0 0 0 0 1

Figure 3: Example 7-bit ASCII Basis Bit Streams

The advantage of the parallel bit stream representation is that we can use the 128-bit SIMD registers

commonly found on commodity processors (e.g. SSE on Intel) to process 128 byte positions at a time

using bitwise logic, shifting and other operations.

Just as forward and inverse Fourier transforms are used to transform between the time and frequency

domains in signal processing, bit stream transposition and inverse transposition provides “byte space” and

“bit space” views of text. The goal of the Parabix framework is to support efficient text processing using

6

0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

these two equivalent representations in the same way that efficient signal processing benefits from the use

of the frequency domain in some cases and the time domain in others.

In the Parabix framework, basis bit streams are used as the starting point to determine other bit streams.

In particular, Parabix uses the basis bit streams to construct character-class bit streams in which each 1 bit

indicates the presence of a significant character (or class of characters) in the parsing process. Character-

class bit streams may then be used to compute lexical bit streams and error bit streams, which Parabix

uses to process and validate the source document. The remainder of this section will discuss each type of

bit stream.

Basis Bit Streams: To construct the basis bit streams, the source data is first loaded in sequential order

and then transposed — through a series of SIMD pack, shift, and bitwise operations — so that Parabix

can efficiently produce the character-class bit streams. Using the SIMD capabilities of current commodity

processors, the transposition process incurs an amortized cost of approximately 1 cycle per byte.

Character-class Bit Streams: Typically, as text parsers process input data, they locate specific charac-

ters to determine if and when to transition between data and metadata parsing. For example, in XML, any

opening angle bracket character, ‘<’, may indicate that we are starting a new markup tag. Traditional byte-

at-a-time parsers find these characters by comparing the value of each byte with a set of known significant

characters and branching appropriately when one is found, typically using an if or switch statement. Using

this method to perform multiple transitions in parallel is non-trivial and may require fairly sophisticated

algorithms to do so correctly.

Character-class bit streams allow us to perform up to 128 “comparisons” in parallel with a single op-

eration by using a series of boolean-logic operations 2 to merge multiple basis bit streams into a sin-

gle character-class stream that marks the positions of key characters with a 1. For example, a char-

acter is an ‘<’ if and only if ¬(b0 ∨ b1) ∧ (b2 ∧ b3 ∧ b4 ∧ b5) ∧ ¬(b6 ∨ b7) = 1. Classes of charac-

ters can be found with similar formulas. For example, a character is a number [0-9] if and only if

¬(b0∨b1)∧ (b2∧b3)∧¬(b4∧ (b5∨b6)). An important observation here is that a range of characters can

sometimes take fewer operations and require fewer basis bit streams to compute than individual characters.

Finding optimal solutions to all character-classes is non-trivial and goes beyond the scope of this paper.

2∧, ∨ and ¬ denote the boolean AND, OR and NOT operations.

7

0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Lexical and Error Bit Streams: To perform lexical analysis on the input data, Parabix computes lexical

and error bit streams from the character-class bit streams using a mixture of both boolean logic and integer

math. Lexical bit streams typically mark multiple current parsing positions. Unlike the single-cursor

approach of traditional text parsers, these allow Parabix to process multiple cursors in parallel. Error bit

streams are often the byproduct or derivative of computing lexical bit streams and can be used to identify

any well-formedness issues found during the parsing process. The presence of a 1 in an error stream

indicates that the lexical stream cannot be trusted to be completely accurate and it may be necessary to

perform some sequential parsing on that section to determine the cause and severity of the error.

To form lexical bit streams, we have to introduce a few new operations: Advance and ScanThru. The

Advance operator accepts one input parameter, c, which is typically viewed as a bit stream containing

multiple cursor bits, and advances each cursor one position forward. On little-endian architectures, shifting

forward means shifting to the right. ScanThru accepts two input parameters, c and m; any bit that is in

both c and m is moved to first subsequent 0-bit in m by calculating (c+m)∧¬m. For example, in Figure

4 suppose we have the regular expression <[a-zA-Z]+> and wish to find all instances of it in the source

text. We begin by constructing the character classes C0, which consists of all letters, C1, which contains

all ‘>’s, and C2, which marks all ‘<’s. In L0 the position of every ‘<’ is advanced by one to locate the

first character of each token. By computing E0, the parser notes that “<>” does not match the expected

pattern. To find the end positions of each token, the parser calculates L1 by moving the cursors in L0

through the letter bits in C0. L1 is then validated to ensure that each token ends with a ‘>’ and discovers

that “<error]” too fails to match the expected pattern. With additional post bit-stream processing, the

erroneous cursors in L0 and L1 can be removed; the details of which go beyond the scope of this paper.

source text <a><valid> <string> <>ignored><error]
C0 = [a-zA-Z] .1..11111...111111.....1111111..11111.
C1 = [>] ..1......1........1...1.......1.......
C2 = [<] 1..1.......1.........1.........1......
L0 = Advance(C2) .1..1.......1.........1.........1.....
E0 = L0∧¬C01...............
L1 = ScanThru(L0,C0) ..1......1........1...1..............1
E1 = L1∧¬C11

Figure 4: Lexical Parsing in Parabix

8

0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Using this parallel bit stream approach, conditional branch statements used to identify key positions

and/or syntax errors at each each parsing position are mostly eliminated, which, as Section 6.2 shows,

minimizes branch misprediction penalties. Accurate parsing and parallel lexical analysis is done through

processor-friendly equations that require neither speculation nor multithreading.

3.2 Parabix Compilers

To support the Parabix execution framework, we have developed a tool chain to the automate various

aspects of parallel bit stream programming. Our tool chain consists of two compilers: a character class

compiler (ccc) and an unbounded bit stream to C/C++ block-at-a-time processing compiler (Pablo).

The character class compiler is used to automatically produce bit stream logic for all the individual

characters (e.g., delimiters) and character classes (e.g., digits, letters) used in a particular application.

Input is specified using a character class syntax adapted from the standard regular expression notations.

Output is a minimized set of three-address bitwise operations to compute each of the character classes

from the basis bit streams.

For example, Figure 5 shows the input and output produced by the character class compiler for the

example of [0-9] discussed in the previous section. The output operations may be viewed as operations

on a single block of input at a time, or may be viewed as operations on unbounded bit streams as supported

by the Pablo compiler.

INPUT: digit = [0-9]

OUTPUT: temp1 = (basis_bits.bit_0 | basis_bits.bit_1)
temp2 = (basis_bits.bit_2 & basis_bits.bit_3)
temp3 = (temp2 &˜ temp1)
temp4 = (basis_bits.bit_5 | basis_bits.bit_6)
temp5 = (basis_bits.bit_4 & temp4)
digit = (temp3 &˜ temp5)

Figure 5: Character Class Compiler Input/Output

The Pablo compiler abstracts away the details of programming parallel bit stream code in terms of finite

SIMD register widths and application buffer sizes. Input to Pablo is a language for expressing bit stream

operations on unbounded bit streams. The operations include bitwise logic, the Advance and ScanThru

9

0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

INPUT: def parse_tags(classes, errors):
classes.C0 = Alpha
classes.C1 = Rangle
classes.C2 = Langle
L0 = bitutil.Advance(C2)
errors.E0 = L0 &˜ C0
L1 = bitutil.ScanThru(L0, C0)
errors.E1 = L1 &˜ C1

OUTPUT: struct Parse_tags {
Parse_tags() { CarryInit(carryQ, 2); }
void do_block(Classes & classes, Errors & errors) {
BitBlock L0, L1;
classes.C0 = Alpha;
classes.C1 = Rangle;
classes.C2 = Langle;
L0 = BitBlock_advance_ci_co(C2, carryQ, 0);
errors.E0 = simd_andc(L0, C0);
L1 = BitBlock_scanthru_ci_co(L0, C0, carryQ, 1);
errors.E1 = simd_andc(L1, C1);
CarryQ_Adjust(carryQ, 2);

}
CarryDeclare(carryQ, 2);

};

Figure 6: Parallel Block Compiler (Pablo) Input/Output

operations described in the previous subsection as well as if and while control structures. Pablo translates

these operations to block-at-a-time code in C/C++.

The key functionality of Pablo is to arrange for block-to-block carry bit propagation to implement the

long bit stream shift and addition operations required by Advance and ScanThru.

For example, we can translate the simple parsing example of 4 above into Pablo code to produce the

output as shown in Figure 6. In this example, Pablo has the primary responsibility of inserting carry

variable declarations that allow the results of Advance and ScanThru operations to be carried over

from block to block. A separate carry variable is required for every Advance or ScanThru operation.

A function containing such operations is translated into a public C++ class (struct), which includes a Carry

Queue to hold all the carry variables from iteration to iteration, together with the a method do_block to

implement the processing for a single block (based on the SIMD register width). Macros CarryDeclare

10

0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

and CarryInit declare and initialize the Carry Queue structure depending on the specific architecture

and Carry Queue representation. The unbounded bit stream Advance and ScanThru operations are

translated into block-by-block equivalents with explicit carry-in and carry-out processing. At the end of

each block, the CarryQ_Adjust operation implements any necessary adjustment of the Carry Queue to

prepare for the next iteration. The Pablo language and compiler also support conditional and iterative bit

stream logic on unbounded streams (if and while constructs) which involves additional carry-test insertion

in control branches. Explaining the full details of the translation is beyond the scope of this paper.

3.3 Parabix Run-Time Libraries

The Parabix architecture also includes run-time libraries that support a machine-independent view of

basic SIMD operations, as well as a set of core function libraries. For machine-independence, we program

all operations using an abstract SIMD machine. The abstract machine supports all power-of-2 field widths

up to the full SIMD register width on a target machine. Let w = 2k be the field width in bits. Let f be a

basic binary operation defined on w-bit quantities producing an w-bit result. Let W be the SIMD vector

size in bits where W = 2K. Then the C++ template notation v=simd<w>::f(a,b) denotes the general

pattern for a vertical SIMD operation yielding an output SIMD vector v, given two input SIMD vectors a

and b. For each field vi of v, the value computed is f (ai,bi). For example, given 128-bit SIMD vectors,

simd<8>::add(a,b) represents the simultaneous addition of sixteen 8-bit fields.

We have ported parabix to a wide variety of processor architectures demonstrating its applicability to

commodity SIMD hardware. We currently take advantage of the 128-bit Altivec operations on the Power

PC, 64-bit MMX and 128-bit SSE operations on previous generation Intel platforms, the latest 256-bit

AVX extensions on the Sandybridge processor, and finally the 128-bit Neon operations on ARM.

4 The Parabix XML Parser
This section describes the implementation of the Parabix XML parser. Figure 7 shows its overall

structure set up for well-formedness checking. The input file is processed using 11 functions organized

into 7 modules. In the first module, Read_Data, the input file is loaded into the data buffer. The

data is then transposed to eight parallel basis bit streams (basis bits) in the Transposition module.

The basis bits are used in by the U8_Validation module to validate UTF-8 characters, and by the

11

0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Read
Data Transposition

Classification
Gen_Scope

U8_Validation

Parse_CtCDPI
Parse_Ref
Parse_Tag

Name_Validation
Err_Check Postprocessing

data_buffer

basis_bits

input_file

lex, scope

CtCDPI, ref, tag

u8

xml_name, err_stream

err_pos

Figure 7: Parabix XML Parser Structure

Classification and Gen_Scope module to generate all the XML lexical item streams (lex) and

scope streams (scope). Scope streams are a simplified subset of lex streams in which the legal yet insignif-

icant cursors have been removed. Both the lex and scope streams are supplied to the parsing module, which

consists of three functions: (1) Parse_CtCDPI, (2) Parse_Ref and (3) Parse_tag; these functions

deal with the parsing of (1) comments, CDATA sections, and processing instructions; (2) references, and

(3) start tags, end tags, and empty tags as well as any related attributes. Afterward, the information is gath-

ered by the Name_Validation and Err_Check functions, producing name check streams and error

streams. Name check streams are weak error streams that verify each character used in a name is valid

according to the XML 1.0 specification. These are then passed to the final Postprocessing module.

Any error that cannot be conveniently detected in bit space are checked here. The final output reports any

well-formedness error and its position within the input file.

Using this structure, all of the functions in the four shaded modules consist entirely of parallel bit

stream operations. Of these, the Classification function consists of XML character class definitions that

are generated using our character class compiler ccc, while much of the U8 Validation similarly consists

of UTF-8 byte class definitions that are also generated by ccc. The remainder of these functions are

programmed using our unbounded bit stream language following the logical requirements of XML parsing.

All the functions in the four shaded modules are then compiled to low-level C/C++ code using our Pablo

compiler. This code is then linked in with the general Transposition code available in the Parabix run-time

library, as well as the hand-written Postprocessing code that completes the well-formed checking.

12

0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

5 Evaluation Framework
XML Parsers: We evaluate the Parabix XML parser described above against two widely available

open-source parsers: Xerces-C [12] and Expat [8]. Each of the parsers is evaluated on the task of imple-

menting the parsing and well-formedness validation requirements of the full XML 1.0 specification [5].

Xerces-C version 3.1.1 (SAX) is a validating XML parser written in C++ and is available as part of the the

Apache project. Expat version 2.0.1 is a stream-oriented non-validating XML parser library written in C.

To ensure a fair comparison, we restricted our analysis of Xerces-C to its WFXML scanner to eliminate

the cost of non-well-formedness validation and used the SAX interface to avoid the memory cost of DOM

tree construction.

XML Workloads: XML is used for a variety of purposes ranging from databases to config files in

mobile phones. A key predictor of the overall parsing performance of an XML file is its Markup density

(i.e., the ratio of markup vs. the total XML document size.) This metric has substantial influence on the

performance of traditional recursive descent XML parsers. We use a mixture of document-oriented and

data-oriented XML files in our study to analyze workloads with a full spectrum of markup densities.

Table 1 shows the document characteristics of the XML input files selected for this performance study.

The jawiki.xml and dewiki.xml XML files represent document-oriented XML inputs and contain the three-

byte and four-byte UTF-8 sequence required for the UTF-8 encoding of Japanese and German characters

respectively. The remaining data files are data-oriented XML documents and consist entirely of single

byte encoded ASCII characters.

File Name dew.xml jaw.xml roads.gml po.xml soap.xml
File Type document document data data data
File Size (kB) 66240 7343 11584 76450 2717
Markup Item Count 406792 74882 280724 4634110 18004
Markup Density 0.07 0.13 0.57 0.76 0.87

Table 1: XML Document Characteristics

Platform Hardware: SSE extensions have been available on commodity Intel processors for over a

decade since the Pentium III. They have steadily evolved with improvements in instruction latency, cache

interface, register resources, and the addition of domain specific instructions. Here we investigate SIMD

extensions across three different generations of intel processors (hardware details in Table 2). We compare

13

0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

the energy and performance profile of the Parabix under the platforms. We also analyze the implementation

specifics of SIMD extensions under various microarchitectures and the newer AVX extensions supported

by Sandybridge.

We investigated the execution profiles of each XML parser using the performance counters found in the

processor. We chose several key hardware events that provide insight into the profile of each application

and indicate if the processor is doing useful work [2, 3]. The set of events included in our study are:

Branch instructions, Branch mispredictions, Integer instructions, SIMD instructions, and Cache misses.

In addition, we characterize the SIMD operations and study the type and class of SIMD operations using

the Intel Pin binary instrumentation framework.

Processor Core2 Duo (2.13GHz) i3-530 (2.93GHz) Sandybridge (2.80GHz)
L1 D Cache 32KB 32KB 32KB
L2 Cache Shared 2MB 256KB/core 256KB/core
L3 Cache — 4MB 6MB
Bus or QPI 1066Mhz Bus 1333Mhz QPI 1333Mhz QPI
Memory 2GB 4GB 6GB
Max TDP 65W 73W 95W

Table 2: Platform Hardware Specs

Energy Measurement: A key benefit of the Parabix parser is its more efficient use of the processor

pipeline which reflects in the overall energy usage. We measure the energy consumption of the processor

directly using a current clamp. We apply the Fluke i410 current clamp [9] to the 12V wires that supply

power to the processor sockets. The clamp detects the magnetic field created by the flowing current and

converts it into voltage levels (1mV per 1A current). The voltage levels are then monitored by an Agilent

34410a digital multimeter at the granularity of 100 samples per second. This measurement captures the

instantaneous power to the processor package, including cores, caches, northbridge memory controller,

and the quick-path interconnects. We obtain samples throughout the entire execution of the program and

then calculate overall total energy as 12V ∗∑
Nsamples
i=1 Samplei.

6 Efficiency of the Parabix-XML Parser
In this section we analyze the energy and performance characteristics of the Parabix-based XML parser

against the software XML parsers, Xerces and Expat. For our baseline evaluation, we compare all the

XML parsers on the Core-i3.

14

0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6.1 Cache behavior

The approximate miss penalty on the Core-i3 for L1, L2 and L3 caches is 4, 11, and 36 cycles respec-

tively. The L1 (32KB) and L2 cache (256KB) are private per core; L3 (4MB) is shared by all the cores.

Figure 8 shows the cache misses per kilobyte of input data. Analytically, the cache misses for the Expat

and Xerces parsers represent a 0.5 cycle per XML byte processed. This overhead does not necessarily

reflect in the overall performance of these parsers as they experience other overheads related to branch

mispredictions. Compared to Xerces and Expat, the data organization of Parabix-XML significantly re-

duces the overall cache miss rate; specifically, there were 7× and 15× fewer L1 and L2 cache misses

compared to the next best parser tested. The improved cache utilization helps keep the SIMD units busy

by minimizing memory-related stalls and lowers the overall energy consumption by reducing the need to

access the higher levels of the cache hierarchy. Using microbenchmarks, we estimated that the L1, L2,

and L3 cache misses consume ∼8.3nJ, ∼19nJ, and ∼40nJ respectively. On average, with a 1GB XML

file, Expat and Xerces would consume over 0.6J and 0.9J respectively due to cache misses alone.

 dew jaw roads po soap
0

50

100

150

3.7 4.2 4.9 4.0 3.6

Parabix Expat Xerces

(a) L1 Misses

 dew jaw roads po soap
0

5

10

15

0.1 0.1 0.1 0.1 0.1

Parabix Expat Xerces

(b) L2 Misses

 dew jaw roads po soap
0

1

2

3

4

5

0.02
0.03

0.02
0.01

0.06

Parabix Expat Xerces

(c) L3 Misses

Figure 8: Cache Misses per kB of input data.

6.2 Branch Mispredictions

In general, performance is limited by branch mispredictions. Unfortunately, it is difficult to reduce the

branch misprediction rate of traditional XML parsers due to: (1) the variable length nature of the syntactic

elements contained within XML documents; (2) a data dependent characteristic, and (3) the extensive

set of syntax constraints imposed by the XML 1.0/1.1 specifications. As shown in Figure 9(a), Xerces

averages up to 13 branches per XML byte processed on high density markup. On modern commodity

processors the cost of a single branch misprediction is incur over 10s of CPU cycles to restart the processor

pipeline. The high miss prediction rate in conventional parsers is a significant overhead. In Parabix-XML,

15

0840
0841
0842
0843
0844
0845
0846
0847
0848
0849
0850
0851
0852
0853
0854
0855
0856
0857
0858
0859
0860
0861
0862
0863
0864
0865
0866
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881
0882
0883
0884
0885
0886
0887
0888
0889
0890
0891
0892
0893
0894
0895

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

dew.xml jaw.xml roads.gml po.xml soap.xml
0

2000

4000

6000

8000

10000

12000

14000
Parabix Expat Xerces

(a) Branch Instructions / kB

 dew.xml jaw.xml roads.gml po.xml soap.xml
0

100
200
300
400
500
600
700
800

Parabix Expat Xerces

(b) Branch Misses / kB

Figure 9: Branch characteristics on the Core-i3 per kB of input data.

the use of SIMD operations eliminates many branches. Most conditional branches can be replaced with

bitwise operations, which can process up to 128 characters worth of branches with one operation or with

a series of logical predicate operations, which are cheaper to compute since they require only SIMD

operations.

As shown in Figure 9(a), Parabix-XML is nearly branch free and exhibits minimal dependence on the

source markup density. Specifically, it experiences between 19.5 and 30.7 branch mispredictions per kB

of XML data. Conversely, the cost of branch mispredictions for the Expat parser can be over 7 cycles per

XML byte (see Figure 9(b)) — which exceeds the average latency of a byte processed by Parabix-XML.

6.3 SIMD Instructions vs. Total Instructions

In Parabix-XML, the ratio of retired SIMD instructions to total instructions provides insight into the rel-

ative degree to which Parabix-XML achieves parallelism over the byte-at-a-time approach. Using the Intel

Pin tool, we gathered the dynamic instruction mix for each XML workload and classified the instructions

as either SIMD or non-SIMD. Figure 10 shows the percentage of SIMD instructions in the Parabix-XML

parser. The ratio of executed SIMD instructions over total instructions indicates the amount of available

parallelism. The resulting instruction mix consists of 60% to 80% SIMD instructions. The markup density

of the files influence the number of scalar instructions needed to handle the tag processing which affects

the overall parallelism that can be extracted by Parabix. We find that degradation rate is low and thus the

performance penalty incurred by increasing the markup density is minimal.

16

0896
0897
0898
0899
0900
0901
0902
0903
0904
0905
0906
0907
0908
0909
0910
0911
0912
0913
0914
0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946
0947
0948
0949
0950
0951

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

6.4 CPU Cycles

Figure 11 shows overall parser performance in terms of CPU cycles per kB. Parabix-XML is 2.5 to 4×

faster on document-oriented input and 4.5 to 7× faster on data-oriented input. Traditional parsers can be

dramatically slowed by dense markup but Parabix-XML is relatively unaffected. Unlike Parabix-XML

and Expat, Xerces transcodes input to UTF-16 before processing it; this requires several cycles per byte.

However, transcoding using parallel bit streams is significantly faster and requires less than a single cycle

per byte.

 dew jaw roads po soap
0

20

40

60

80

100

Non-SIMD
SIMD

Figure 10: SIMD Instruction Percentage

dew.xml jaw.xml roads.gml po.xml soap.xml
0

10000

20000

30000

40000

50000

60000
Parabix Expat Xerces

Figure 11: Performance (CPU Cycles per kB)

6.5 Power and Energy

In this section, we study the power and energy consumption of Parabix-XML in comparison with Expat

and Xerces on Core-i3. Figure 12(a) shows the average power consumed by each parser. Parabix-XML,

dominated by SIMD instructions, uses ∼ 5% additional power. While the SIMD functional units are

significantly wider than the scalar counterparts, register width and functional unit power account only for

a small fraction of the overall power consumption in a processor pipeline. More importantly by using

data parallel operations Parabix amortizes the fetch and data access overheads. This results in minimal

power increase compared to the conventional parsers. Perhaps the energy trends shown in Figure 12(b)

reveal an interesting trend. Parabix consumes substantially less energy than the other parsers. Parabix

consumes 50 to 75 nJ per byte while Expat and Xerces consume 80nJ to 320nJ and 140nJ to 370nJ per

byte respectively. Although Parabix requires slightly more power (per instruction), the processing time of

Parabix is significantly lower.

17

0952
0953
0954
0955
0956
0957
0958
0959
0960
0961
0962
0963
0964
0965
0966
0967
0968
0969
0970
0971
0972
0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

 dew.xml jaw.xml roads.gml po.xml soap.xml
0

5

10

15

20

25

Parabix Expat Xerces

(a) Avg. Power (Watts)

 dew.xml jaw.xml roads.gml po.xml soap.xml
0

50
100
150
200
250
300
350
400

Parabix Expat Xerces

(b) Energy Consumption (µJ per kB)

Figure 12: Power profile of Parabix on Core-i3

7 Evaluation of Parabix across different Hardware

7.1 Performance

In this section, we study the performance of the XML parsers across three generations of Intel architec-

tures. Figure 13(a) shows the average execution time of Parabix-XML (over all workloads). We analyze

the execution time in terms of SIMD operations that operate on “bit streams” (bit-space) and scalar oper-

ations that perform “post processing” on the original source bytes. In Parabix-XML, a significant fraction

of the overall execution time is spent on SIMD operations.

Our results demonstrate that Parabix-XML’s optimizations complement newer hardware improvements.

For bit stream processing, Core-i3 has a 40% performance increase over Core2; similarly, SandyBridge

has a 20% improvement compared to Core-i3. These gains appear to be independent of the markup

density of the input file. Postprocessing operations demonstrate data dependent variance. Performance

on the Core-i3 increases by 27%–40% compared to Core2 whereas SandyBridge increases by 16%–29%

compared to Core-i3. For the purpose of comparison, Figure 13(b) shows the performance of the Expat

parser. Core-i3 improves performance only by 29% over Core2 while SandyBridge improves performance

by less than 6% over Core-i3. Note that the gains of Core-i3 over Core2 includes an improvement both

in the clock frequency and microarchitecture improvements while SandyBridge’s gains can be mainly

attributed to the architecture. Figure 14(a) shows the average power consumption of Parabix-XML over

each workload and as executed on each of the processor cores: Core2, Core-i3 and SandyBridge. Each

generation of processor seem to bring with them 25–30% improvement in power consumption over the

previous generation. Parabix-XML on SandyBridge consumes 72%–75% less energy than it did on Core2.

18

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Core2 Core‐i3 SandyBridge
0

500
1000
1500
2000
2500
3000
3500
4000

postprocessing
bit stream

(a) Parabix

0
2000
4000
6000
8000
10000
12000
14000
16000

Core2 Core‐i3 SandyBridge

(b) Expat

Figure 13: Average Performance Parabix vs. Expat (y-axis: ns per kB)

 dew.xml jaw.xml roads.gml po.xml soap.xml
0

5

10

15

20

25

30

35
core2 i3 bridge

(a) Avg. Power of Parabix on various hardware (Watts)

 dew.xml jaw.xml roads.gml po.xml soap.xml
0

20
40
60
80

100
120
140
160

core2 i3 bridge

(b) Avg. Energy Consumption on various hardware (nJ per
kB)

Figure 14: Energy Profile of Parabix on various hardware platforms

7.2 Parabix on Mobile processors

Our experience with Intel processors led us to question whether mobile processors with SIMD support,

such as the ARM Cortex-A8, could benefit from Parabix technology. ARM Neon provides a 128-bit

SIMD instruction set similar in functionality to Intel SSE3 instruction set. In this section, we present our

performance comparison of a Neon-based port of Parabix versus the Expat parser. Xerces is excluded from

this portion of our study due to the complexity of the cross-platform build process for C++ applications.

The platform we use is the Samsung Galaxy Android Tablet that houses a Samsung S5PC110 ARM

Cortex-A8 1Ghz single-core, dual-issue, superscalar microprocessor. It includes a 32kB L1 data cache and

a 512kB L2 shared cache. Migration of Parabix-XML to the Android platform only required developing

a Parabix run-time library for ARM Neon. The majority of the runtime functionality was ported directly.

However, a small subset of key SIMD instructions (e.g., bit packing) did not exist on Neon. In such cases,

the logical equivalent of those instructions was emulated using the available ISA. The resulting application

was cross-compiled for Android using the Android NDK.

19

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A comparison of Figure 15(a) and Figure 11 demonstrates that the performance of both Parabix and

Expat degrades substantially on Cortex-A8 (5–17×). This result was expected given the comparably

performance limited Cortex-A8. Surprisingly, on Cortex-A8, Expat outperforms Parabix on each of the

lower markup density workloads, dew.xml and jaw.xml. On the remaining higher-density workloads,

Parabix performs only moderately better than Expat. Investigating causes for this performance degradation

for Parabix led us to investigate the latency of Neon SIMD operations.

dew jaw roads po soap
0

20000

40000

60000

80000
Parabix Expat

(a) ARM Neon Performance (cycles
per kB)

0 0.2 0.4 0.6 0.8 1
0

20000

40000

60000

80000

100000

deja

roads
po

soap

deja

roads
posoap

Markup Density

P
ro

ce
ss

in
g

 T
im

e
 (

n
s)

Parabix Expat

(b) ARM Neon

0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

de
ja

roads
po

soap

deja

roads posoap

Markup Density

P
ro

ce
ss

in
g

 T
im

e
 (

n
s)

Parabix Expat

(c) Core i3

Figure 15: Comparison of Parabix-XML on ARM vs. Intel.

Figure 15(b) investigates the performance of Expat and Parabix for the various input workloads on the

Cortex-A8; Figure 15(c) plots the performance for Core-i3. The results demonstrate that that the execution

time of each parser varies in a linear fashion with respect to the markup density of the file. On the both

Cortex-A8 and Core-i3 both parsers demonstrate the same trend: files with a lower markup density exhibit

higher levels of parallelism; consequently, the overhead of SIMD instructions has a greater impact on

the overall execution time for those files. The contrast between Figure 15(b) and 15(c) provides insight

into the problem: Parabix-XML’s performance is hindered by SIMD instruction latency. This is possibly

because the Neon SIMD extensions are implemented as a coprocessor on the Cortex-A8, which imposes a

higher overhead for applications that frequently inter-operate between scalar and SIMD registers. Future

performance enhancement to ARM Neon that implement the Neon within the core microarchitecture could

substantially improve the efficiency of Parabix-XML.

20

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

8 Parabix on AVX
In this section, we discuss the scalability and performance advantages of our 256-bit AVX (Advanced

Vector Extensions) Parabix-XML port. The Parabix run-time libraries originally targeted the 128-bit SSE2

SIMD technology, available on all modern 64-bit Intel and AMD processors. It was recently been ported

to AVX, which is commercially available on the latest the SandyBridge microarchitecture Intel processors.

Although the runtime had to be ported to the new ISA, no modifications were made to the application.

8.1 3-Operand Form

In addition to widening the 128-bit operations to 256-bit, AVX technology uses a nondestructive 3-

operand instruction format. Previous SSE implementations used a destructive 2-operand instruction for-

mat. In the 2-operand format a single register is used as both a source and destination register. As such,

2-operand instructions that require the value of both a and b, must either copy an additional register value

beforehand, or reconstitute or reload a register value afterwards to recover the value. With the 3-operand

format, output may now be directed to the third register independently of the source operands. By avoid-

ing the need to copy or reconstitute operand values, a considerable reduction in instructions required for

unloading from and loading into registers. AVX technology makes available the 3-operand form for both

the new 256-bit operations as well as the base 128-bit SSE operations.

8.2 256-bit Operations

With the introduction of 256-bit SIMD registers, and under ideal conditions, one would anticipate a

corresponding 50% reduction in the SIMD instruction count of Parabix on AVX. However, in the Sandy-

Bridge AVX implementation, Intel has focused primarily on floating point operations as opposed to the

integer based operations. 256-bit SIMD is available for loads, stores, bitwise logic and floating operations,

whereas SIMD integer operations and shifts are only available in the 128-bit form.

8.3 Performance Results

We implemented two versions of Parabix-XML using AVX technology. The first was simply the re-

compilation of the existing Parabix-XML source code to take advantage of the 3-operand form of AVX

instructions while retaining a uniform 128-bit SIMD processing width. The second involved rewriting the

Parabix run-time library to leverage the 256-bit AVX instructions wherever possible and to simulate the

21

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

remaining operations using pairs of 128-bit operations. Figure 16 shows the reduction in instruction counts

achieved in these two versions. For each workload, the base instruction count of the Parabix binary com-

piled in 2-operand SSE-only mode is indicated by “sse;” the version that only takes advantage of the AVX

3-operand mode is labeled “128-bit avx,” and the version uses the 256-bit operations wherever possible is

labeled “256-bit avx.” The instruction counts are divided into three classes: “non-SIMD” operations are

the general purpose instructions. The “bitwise SIMD” class comprises the bitwise logic operations, that

are available in both 128-bit form and 256-bit form — excluding bitwise shifts which are only available

in 128-bit form. The “other SIMD” class comprises all other SIMD operations, primarily comprising the

integer SIMD operations that are available only at 128-bit widths even under AVX.

0

4000

8000

12000

16000

20000

SS
E

12
8‐
bi
t A

VX

25
6‐
bi
t A

VX SS
E

12
8‐
bi
t A

VX

25
6‐
bi
t A

VX SS
E

12
8‐
bi
t A

VX

25
6‐
bi
t A

VX SS
E

12
8‐
bi
t A

VX

25
6‐
bi
t A

VX SS
E

12
8‐
bi
t A

VX

25
6‐
bi
t A

VX
dew.xml jaw.xml roads.gml po.xml soap.xml

Other‐SIMD

Bitwise‐SIMD

Non‐SIMD

Figure 16: Parabix Instruction Counts (y-axis: Instructions per kB)

dew.xml jaw.xml roads.gml po.xml soap.xml
0

500

1000

1500

2000

2500
sse 128-bit avx 256-bit avx

Figure 17: Parabix Performance (y-axis: ns per kB)

Note that, in each workload, the number of non-SIMD instructions remains relatively constant with

each workload. As expected, the number of bitwise SIMD operations remains the same for both SSE and

22

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

128-bit while dropping dramatically when operating 256-bits at a time. The reduction was measured at

32%–39% depending on markup density of the workload. The “other SIMD” class shows a substantial

30%–35% reduction with AVX 128-bit technology compared to SSE. This reduction is due to elimination

of register unloading and reloading when SIMD operations are compiled using 3-operand AVX form

versus 2-operand SSE form. A further 10%–20% reduction is also observed when Parabix-XML utilized

the AVX runtime library.

The reductions in instruction counts are quite dramatic with the AVX extensions in Parabix demon-

strating the ability of our runtime framework to exploit the available hardware resources. As shown in

Figure 17, the benefits of the reduced SIMD instruction count are achieved only in the AVX 128-bit ver-

sion. In this case, the benefits of 3-operand form seem to fully translate to performance benefits. Based

on the reduction of overall Bitwise-SIMD instructions we expected a 11% improvement in performance.

Instead, perhaps bizarrely, the performance of Parabix in the 256-bit AVX implementation does not im-

prove significantly and actually degrades for files with higher markup density (∼ 11%). dew.xml, on

which bitwise-SIMD instructions reduced by 39%, saw a performance improvement of 8%. We believe

that this is primarily due to the intricacies of the first generation AVX implementation in SandyBridge,

with significant latency in many of the 256-bit instructions in comparison to their 128-bit counterparts.

The 256-bit instructions also have different scheduling constraints that seem to reduce overall throughput.

If these latency issues can be addressed in future AVX implementations, further performance and energy

benefits could be realized in Parabix-XML.

9 Multithreaded Parabix
Even if an application is infinitely parallelizable and thread synchronization costs are non-existent, all

applications are constrained by the power and energy overheads incurred when utilizing multiple cores:

as more cores are put to work, a proportional increase in power occurs. Unfortunately, due to the runtime

overheads associated with thread management and data synchronization, it is very hard to obtain corre-

sponding improvements in performance resulting in increased energy costs. Parabix-XML can improve

performance and reduce energy consumption by improving the overall computation efficiency. However,

up to this point, we restricted Parabix-XML to a single core. In this section, we discuss our parallelized

23

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

version of Parabix-XML to study the effects of thread-level parallelism in conjunction with Parabix-XML’s

data parallelism.

The typical approach to handling data parallelism with multiple threads involves partitioning data uni-

formly across the threads. However XML parsing is inherently sequential, which makes it difficult to

partition the data. Several attempts have been made to address this problem using a preparsing phase to

help determine the tree structure and to partition the XML document accordingly [18]. Another approach

involved speculatively partitioning the data [21] but this introduced a significant level of complexity into

the overall logic of the program.

Data Structure Flow / Dependencies
data buffer basis bits u8 lex scope ctCDPI ref tag xml names err streams

latency(C/B) size (B) 128 128 496 448 80 176 112 176 16 112
Stage1 1.97 read data write

transposition read write
classification read write

Stage2 1.22 validate u8 read write
gen scope read write

parse CtCDPI read read write write
parse ref read read read write

Stage3 2.03 parse tag read read read write
validate name read read read read read write write

gen check read read read read read read write
Stage4 1.32 postprocessing read read read read read

Table 3: Relationship between Each Pass and Data Structures

In contrast to those methods, we adopted a parallelism strategy that requires neither speculation nor

pre-parsing. As described in Section 4, Parabix-XML consists of multiple passes that, on every chunk of

input data, interact with each other in sequence with no data movement from later to earlier passes. This

fits well into the mold of pipeline parallelism. We partitioned Parabix-XML into four stages and assigned

a core to each to stage. One of the key challenges was to determine which passes should be grouped

together. By analyzing the latency and data dependencies of each of the passes in the single-threaded

version of Parabix-XML (Column 1 in Table 3), and assigned the passes to stages such that that provided

the maximal throughput.

The interface between stages is implemented using a ring buffer, where each entry consists of all ten

data structures for one segment as listed in Table 3. Each pipeline stage S maintains the index of the buffer

entry (IS) that is being processed. Before processing the next buffer frame the stage check if the previous

24

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

dew jaw roads po soap
0

2000

4000

6000

8000
sequential parallel

(a) Performance (Cycles / kB)

dew jaw road po soap
0

10

20

30

40

50
sequential parallel

(b) Avg. Power Consumption

dew jaw road po soap
0

10

20

30

40

50
sequential parallel

(c) Avg. Energy Consumption (nJ / Byte)

Figure 18: Multithreaded Parabix

stage is done by spinning on IS−1 (Stage S− 1’s buffer entry). In commodity multicore chips typically

all threads share the last level cache. If we let the faster pipeline stages run ahead, the data they process

will increase contention to the shared cache. To prevent this we limit how far the faster pipeline stages

can run ahead by controlling the overall size of the ring buffer. Whenever a faster stage runs ahead, it will

effectively cause the ring buffer to fill up and force that stage to stall.

Figure 18 demonstrates the performance improvement achieved by pipelined Parabix-XML in com-

parison with the single-threaded version. The 4-threaded version is ' 2× faster compared to the single

threaded version and achieves ' 2.7 cycles per input byte by exploiting SIMD units of all SandyBridge’s

cores. This performance approaches the 1 cycle per byte performance of custom hardware solutions [10].

Parabix demonstrates the potential to enable an entire new class of applications, text processing, to exploit

multicores.

Figure 18(b) shows the average power consumed by the multithreaded Parabix. Overall, as expected

the power consumption increases in proportion to the number of active cores. Note that the increase is not

linear, since shared units such as last-level-caches consume active power even if only one core is active.

Perhaps more interestingly there is a reduction in execution time, which leads to the energy consumption

(see Figure 18(c)) being similar to the the single-thread execution (in some cases marginally less energy

as shown for soap.xml).

10 Related Work
There has been work in the past which has sought to address the overheads of text processing in specific

applications (e.g., XML parsers) and have adopted specialized hardware and software solutions for each

application. Nicola and John specifically identified the traditional method of XML parsing as a threat to

25

1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

database performance and outlined a number of potential directions for improving performance [19]. The

commercial importance of XML parsing has spurred the development of numerous multi-threaded and

hardware-based approaches: Multithreaded XML techniques include preparsing the XML file to locate

key partitioning points [17, 20] and speculative p-DFAs [24]. Hardware methods include custom XML

chips [15] and FPGA-based implementations [10]. Intel’s SSE4 instructions targeted XML parsers, but

these have not seen widespread use because of portability concerns and the programming challenges that

accompany low level instructions [14]. Recently, Cameron et al. [6,7] designed an accelerated XML parser

using widely available SSE2 instructions. Finally, others have explored the design of custom hardware for

bit parallel operations for text search in network processors [22].

In this paper, we have introduce parallel bit streams as a general abstraction to parallelize and improve

the performance general text processing. We have developed a compiler tool chain and the runtime to

enable bit streams to exploit SIMD extensions found on commodity processors. We are also the first to

perform a detailed analysis of SIMD instruction extensions across three generations of Intel processors

including the new 256 bit AVX extensions. Finally, we have shown the benefits of using multithreading in

conjunction with data parallel phases of the application.

11 Conclusion
In this paper we presented Parabix a software runtime framework for exploiting SIMD data units found

on commodity processors for text processing. The Parabix framework allows to focus on exposing the

parallelism in their application assuming an infinite resource abstract SIMD machine without worrying

about or having to change code to handle processor specifics (e.g., 128 bit SIMD SSE vs 256 bit SIMD on

AVX). We applied Parabix technology to a widely deployed application; XML parsing and demonstrate

the efficiency gains that can be obtained on commodity processors. Compared to the conventional XML

parsers, Expat and Xerces, we achieve 2×—7× improvement in performance and average 4× improve-

ment in energy. We achieve high compute efficiency with an overall 9×—15× reduction in branches,

7×—15× reduction in branch mispredictions, processing up to 128 characters with a single operation.

We used the Parabix framework and XML parsers to study the features of the new 256 bit AVX extension

in Intel processors. We find that while the move to 3-operand instructions deliver significant benefit the

26

1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

HPCA
#160

HPCA
#160

HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

wider operations in some cases have higher overheads compared to the existing 128 bit SSE operations.

We also compare Intel’s SIMD extensions against the ARM Neon. Note that Parabix allowed us to perform

these studies without having to change the application source. Finally, we parallelized the Parabix XML

parser to take advantage of the SIMD units in every core on the chip. We demonstrate that the benefits of

thread-level-parallelism are complementary to the fine-grain parallelism we exploit; parallelized Parabix

achieves a further 2× improvement in performance.

References
[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,

S. W. Williams, and K. A. Yelick. The landscape of parallel computing research: A view from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec 2006.

[2] F. Bellosa. The case for event-driven energy accounting. Technical Report TR-I4-01-07, University of Erlangen, Depart-
ment of Computer Sciece, June 2001.

[3] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade. Decomposable and responsive power models
for multicore processors using performance counters. In Proceedings of the 24th ACM International Conference on
Supercomputing, ICS ’10, pages 147–158, New York, NY, USA, 2010. ACM.

[4] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner. Evolution of thread-level parallelism in desktop applications. In
Proceedings of the 37th annual international symposium on Computer architecture, ISCA ’10, 2010.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible markup language (XML) 1.0 (fifth
edition). W3C Recommendation, 2008.

[6] R. D. Cameron, E. Amiri, K. S. Herdy, D. Lin, T. C. Shermer, and F. P. Popowich. Parallel scanning with bitstream
addition: An xml case study. In Euro-Par 2011, LNCS 6853, Part II, Lecture Notes in Computer Science, pages 2–13,
Berlin, Heidelberg, 2011. Springer-Verlag.

[7] R. D. Cameron, K. S. Herdy, and D. Lin. High performance XML parsing using parallel bit stream technology. In
CASCON ’08: Proceedings of the 2008 conference of the center for advanced studies on collaborative research, pages
222–235, New York, NY, USA, 2008. ACM.

[8] J. Clark. The Expat XML Parser. http://expat.sourceforge.net/.
[9] F. Corporation. Fluke Clamp Meters. http://www.fluke.com/.

[10] Z. Dai, N. Ni, and J. Zhu. A 1 cycle-per-byte XML parsing accelerator. In FPGA ’10: Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, pages 199–208, New York, NY, USA, 2010.
ACM.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark silicon and the end of multicore scaling.
In Proceeding of the 38th annual international symposium on Computer architecture, ISCA ’11, 2011.

[12] A. S. Foundation. Xerces C++ Parser. http://xerces.apache.org/xerces-c/.
[13] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis, and M. Horowitz.

Understanding sources of inefficiency in general-purpose chips. In Proceedings of the 37th annual international sympo-
sium on Computer architecture, ISCA ’10, 2010.

[14] Z. Lei. Xml parsing accelerator with intel streaming simd extensions 4. http://software.intel.com/en-us/articles/xml-
parsing-accelerator-with-intel-streaming-simd-extensions-4-intel-sse4/.

[15] M. Leventhal and E. Lemoine. The XML chip at 6 years. In International Symposium on Processing XML Efficiently:
Overcoming Limits on Space, Time, or Bandwidth, Aug. 2009.

[16] M. Leventhal and E. Lemoine. The xml chip at 6 years. In In Proceedings of the International Symposium on Processing
XML Efficiently., Aug 2009.

[17] X. Li, H. Wang, T. Liu, and W. Li. Key elements tracing method for parallel XML parsing in multi-core system. Parallel
and Distributed Computing Applications and Technologies, International Conference on, 0:439–444, 2009.

27

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567

HPCA

#160

HPCA

#160HPCA 2012 Submission #160. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[18] W. Lu, Y. Pan, , and K. Chiu. A parallel approach to xml parsing. The 7th IEEE/ACM International Conference on Grid
Computing, 2006.

[19] Matthias Nicola and Jasmi John. XML Parsing: A Threat to Database Performance. In Proceedings of the Twelfth
International Conference on Information and Knowledge Management, New Orleans, Louisiana, 2003.

[20] B. Shah, P. Rao, B. Moon, and M. Rajagopalan. A data parallel algorithm for XML DOM parsing. In Z. Bellahsne,
E. Hunt, M. Rys, and R. Unland, editors, Database and XML Technologies, volume 5679 of Lecture Notes in Computer
Science, pages 75–90. Springer Berlin / Heidelberg, 2009.

[21] B. Shah, P. R. Rao, B. Moon, and M. Rajagopalan. A data parallel algorithm for xml dom parsing. In Proceedings of
the 6th International XML Database Symposium on Database and XML Technologies, XSym ’09, pages 75–90, Berlin,
Heidelberg, 2009. Springer-Verlag.

[22] L. Tan and T. Sherwood. A high throughput string matching architecture for intrusion detection and prevention. In
Proceedings of the 32nd annual international symposium on Computer Architecture, 2005.

[23] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Con-
servation cores: reducing the energy of mature computations. In Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and operating systems, ASPLOS ’10, 2010.

[24] Y. Zhang, Y. Pan, and K. Chiu. Speculative p-DFAs for parallel XML parsing. In High Performance Computing (HiPC),
2009 International Conference on, pages 388–397, Dec. 2009.

28

