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Abstract. Bitwise data parallelism has recently been shown to have
considerable promise as the basis for a new, fundamentally parallel, style
of regular expression processing. This paper examines the application of
this approach to the development a full-featured Unicode-capable open-
source grep implementation. Constructed using a layered architecture
combining Parabix and LLVM compiler technologies, icGrep is the first
instance of a potentially large class of text processing applications that
achieve high performance text processing through the combination of
dynamic compilation and bitwise data parallelism. In performance com-
parisons with several contemporary alternatives, 10X or better speedups
are often observed.

1 Introduction

The venerable Unix grep program is an everyday tool widely used to search
for lines in text files matching a given regular expression pattern. Historical
comments ...

Unicode regular expression matching adds performance challenges...
Efforts to improve the performance of regular expression matching through

parallelization have generally concentrated on the use of SIMD, multicore or
GPU technologies to accelerate multiple instances of independent matching prob-
lems. Scarpazza [13] used SIMD and multicore parallelism to accelerate small
ruleset tokenization applications on the Cell Broadband Engine while Valaspura
[12] built on these techniques to accelerate business analytics applications using
SSE instructions on commodity processors. Zu et al [14] use GPU technology
to implement NFA-based regular expression matching with parallelism devoted
both to processing a compressed active state array as well as to handling match-
ing of multiple packet instances. These works have not generally tackled Unicode
matching problems.

Using parallel methods to accelerate matching of a single pattern on a sin-
gle input stream is more difficult. Indeed, of the 13 dwarves identified in the
Berkeley overview of parallel computing research, finite state machines (FSMs)
are considered the hardest to parallelize (embarassingly sequential) [1]. However,
some success has been reported recently along two independent lines of research.
Mytkowicz et al [10] use SIMD shuffle operations to implement composable DFA
transitions using dynamic convergence to reduce the number of states in play



at any one time and range coalescing to compact the transition tables. Unfortu-
nately, the method seems unlikely to apply well to Unicode regular expression
matching problems, which routinely require thousands of DFA states for named
Unicode properties. Building on the Parabix framework, Cameron at al [4] in-
troduce regular expression matching using the bitwise data parallel approach
together with the MatchStar primitive for efficient implementation of Kleene-*
character-class repetitions.

In this paper, we report on the use of the implementation of a full Unicode
regular expression search tool, building on the bitwise data parallel methods
of the Parabix framework combined with the dynamic compilation capabilities
of LLVM. The result is ICgrep, a high-performance, full-featured open-source
grep implementation with systematic support for Unicode regular expressions
addressing the requirements of Unicode Technical Standard #18 [5]. As an al-
ternative to classical grep implementations, ICgrep offers dramatic performance
acceleration in ASCII-based and Unicode matching performance alike.

The remainder of this paper is organized as follows. Section 2 presents back-
ground material dealing with Unicode regular expressions, LLVM, the Parabix
framework and regular expression matching techniques using bitwise data paral-
lelism. Section 3 expands on previous work on bitwise data parallelism by more
fully characterizing the paradigm and documenting important techniques. Sec-
tion 4 addresses the issues and performance challenges associated with meeting
Unicode regular expression requirements and presents the extensions to the Para-
bix techniques that we have developed to address them. Section 5 describes the
overall architecture of the ICgrep implementation with a focus on the integra-
tion of Parabix and LLVM technologies. Section 6 evaluates the performance of
ICgrep on several types of matching problems with contemporary competitors,
including the latest versions of GNU grep, pcregrep, ugrep of the ICU (Interna-
tional Component for Unicode) and re2grep. Section 7 concludes the paper with
remarks on developing the Parabix+LLVM framework for other applications
as well as identifying further research questions in Unicode regular expression
matching with bitwise data parallelism.

2 Background

2.1 Unicode Regular Expression Requirements

Unicode is system for organizing the characters from all languages and symbol
systems into a single numeric space and encoding those values in convenient
formats for computerized processing. The numeric values form a space of inte-
ger codepoints from 0 through hexadecimal 10FFFF. The computerized formats
represent codepoint values as (possibly variable length) sequences of fixed-width
code units. UTF-8 represents each codepoint using a sequence of one to four
octets (8-bit bytes), UTF-16 represents each codepoint using one or two 16-bit
code units and UTF-32 represents each codepoint as a single 32-bit unit. The
format used most often for storage and transmission of Unicode data is UTF-8;
this is the format assumed through this paper.



Traditional grep syntax is oriented towards string search using regular ex-
pressions over ASCII or extended-ASCII byte sequences. A grep search for a
line beginning with a capitalized word might use the pattern “^[A-Z][a-z]+”
(“extended” syntax). Here, “^” is a zero-width assertion matching only at the
start of a line, “[A-Z]” is a character class that matches any single character in
the contiguous range of characters froms A through Z, while the plus operator
in “[a-z]+” denotes repetition of one or more lower case ASCII letters.

While explicit listing of characters of interest is practical with ASCII, it is
less so with Unicode. In the Unicode 7.0 database, there are 1490 characters
categorized as upper case and 1841 categorized as lower case. Rather than ex-
plicit listing of all characters of interest, then, it is more practical to use named
character classes, such as Lu for upper case letters and Ll for lower case letters.
Using these names, our search might be rewritten to find capitalized words in
any language as “^[[:Lu:]][[:Ll:]]+” (Posix syntax) or “^\p{Lu}\p{Ll}+”
(Perl-compatible syntax). The Unicode consortium has defined an extensive list
of named properties that can be used in regular expressions.

Beyond named properties, Unicode Technical Standard #18 defines addi-
tional requirements for Unicode regular expressions, at three levels of complexity
[5]. Level 1 generally relates to properties expressed in terms of individual Uni-
code codepoints, while level 2 introduces complexities due to codepoint sequences
that form grapheme clusters, and level 3 relates to tailored locale-specific sup-
port. We consider only Unicode level 1 requirements in this paper, as most grep
implementations are incomplete with respect the requirements even at this level.
The additional level 1 regular expression requirements primarily relate to larger
classes of characters that are used in identifying line breaks, word breaks and
case-insensitive matching. Beyond this, there is one important syntactic exten-
sion: the ability to refine character class specifications using set intersection and
subtraction. For example, [\p{Greek}&&\p{Lu}] denotes the class of upper case
Greek letters, while [\p{Ll}--\p{ASCII}] denotes the class of all non-ASCII
lower case letters.

2.2 Parabix

The Parabix toolchain is a set of compilers and run-time libraries designed to
take advantage of the SIMD features of commodity processors to support high-
performance streaming text processing based on a bit-parallel transform repre-
senation of text. In this representation, a text T is represented as a set of parallel

bit streams Bi, such that bit j of stream Bi is the ith bit of character code unit
j of T . The Parabix methods have been used to accelerate Unicode transcoding
[2], protein search [6], XML parsing [3], and, most recently, regular expression
search [4].

2.3 LLVM

The LLVM compiler infrastructure is a set of modular compiler components and
tools organized around a powerful generic intermediate representation (LLVM



IR) that is agnostic with respect to source language and code-generation targets.
Beginning as an MSc research project at the University of Illinois [7], LLVM is
now an open-source codebase supported by a broad community of researchers,
developers and commercial organizations.

LLVM features a flexible multi-stage compilation structure that can be or-
ganized in passes in many ways, including fully dynamic just-in-time compila-
tion. Of particular importance to the icGrep project, the LLVM IR supports
arbitrarily-sized vectors of arbitrary-width integers, well suited to code genera-
tion targetting the SIMD integer instructions of commodity processors.

2.4 Parabix Regular Expression Matching

3 Bitwise Data Parallel Paradigm and Methods

The introduction of the method of bitwise data parallelism adds a fundamentally
new paradigm for regular expression matching to complement the traditional ap-
proaches using DFAs, NFAs or backtracking. Whereas the traditional approaches
are all sequential in nature, performing some form of state transition processing
on one input code unit at a time, the bitwise data parallel approach takes a con-
ceptually parallel view of the input stream. Rather than parallelizing existing
sequential approaches, the method introduces parallelism from the ground up.

As a new paradigm, there is much research to do in building upon the basic
framework, characterizing performance depending on input patterns and texts,
developing methods for special cases and so on. Here we make some small con-
tributions to the general framework and methods before moving on to discuss
Unicode issues.

One important aspect of the bitwise data parallel approach is transposition
of input data. In previous work, the Parabix transform has been reported as
imposing an amoritized cost of 1 CPU cycle/input byte, when working with SSE2
[8]. This is consistent with icGrep results. However, the cost of the cost of this
transposition can be hidden through multithreading and pipeline parallelism,
having one core perform work ahead performing transposition, while another
comes behind to perform matching. We discuss this further in Section 5.

The treatment of character and character class recognition is another area
of fundamental difference between the traditional sequential methods and the
bitwise approach. It is here that the clearest separation of the sequential and par-
allel approaches occurs. In the sequential approaches, characters are processed
sequentially with table lookups or jump tables used for each transition. In the
bitwise data parallel approach, all calculations of character class bit streams are
done completely in parallel using bitwise logic.

In the bitwise paradigm, the MatchStar operation elegantly finds all possible
matches for Kleene-* repetitions of characters or character classes using a single
long-stream addition operation. Interestingly, the MatchStar operation also has
application to parallelized long-stream addition[4], as well as use in Myers bit-
parallel edit distance algorithm[9]. In the next section, we show how MatchStar
can be extended for UTF-8 sequences.



We have incorporated an elegant technique for bounded repetitions in icGrep.
This technique allows the matches to Cm,n for some character class C, lower
bound m and upper bound n to be determined in dlog2 me+ dlog2 n−me steps.
Let Ck be the bit stream identifying positions at which the k prior input bytes
are all in C. Then the observation that C2k = Ck ∧ (Ck<<k) enables positions
meeting the lower bound to be determined. An upper bound k similarly involves
excluding those positions not within k of the pending markers (from the previous
match step).

A final general technique worth mentioning is that related to input skipping.
For sequential matching, the Boyer-Moore method is well known for the possible
skipping through input positions of up to the length of the search string for fixed-
string search. NR-grep [11] extends this skipping to regular expression search
using the BNDM (backward non-determinstic dawg matching) method. Is there
an input-skipping method for the bitwise parallel paradigm? The answer is yes:
whenever the bit vector of match positions in play for the current input block
reduce to all zero, the remainder of the pattern can be skipped for processing
the block. This method has been implemented in icGrep.

4 Unicode Regular Expression Methods

4.1 toUTF8 Transformation

The icGrep parser generates an abstract syntax tree (AST) that represents an in-
put regular expression over code points. This AST is passed as input to a toUTF-
8 transformation that generates a new AST that represents the equivalent regular
expression over UTF-8 byte sequences. The transformation accomplishes this by
first determining the number of UTF-8 bytes that are required to represent each
code point contained within each character class. The code points are then split
into sequences of bytes, with each byte containing the necessary UTF-8 prefix.
The UTF-8 encoded bytes are each assigned to a new character class in the new
AST. For an example, consider the following regular expression that consists
entirely of multibyte Unicode characters: ‘\u{244}[\u{2030}-\u{2137}]‘. The
AST from the parser would represent this as a sequence starting with a charac-
ter class containing the code point 0x244 followed by a second character class
containing the range from 0x2030 to 0x2137. After being passed through the
toUTF-8 transformation this AST would become considerably more complex.
The first code point in the sequence would be encoded as the two byte sequence
‘\u{C9}\u{84}‘. The character class containing the range, which is a range of
three byte sequences would be expanded into the series of sequences and alterna-
tions that are necessary to specify all of the possible byte encodings that would
be contained within the range. The UTF-8 encoded regular expression for the
range [\u{2030}-\u{2137}] would be encoded as follows:

\xE2((\x84[\x80-\xB7])|(([\x81-\x83][\x80-\xBF])|(\x80[\xB0-\xBF])))



The benefit of transforming the regular expression immediately after parsing
from being a regular expression over code points into a regular expression over
bytes is that it simplifies the rest of the compiler, as the compiler then only
needs to be concerned with single bytes as opposed to code points, which vary
in size.

4.2 UTF-8 Advance using ScanThru

Each bit position in the character class bitstream of a single byte ASCII character
marks either the location of, or the absence of the search character. To match the
location of a character the current position of the cursor is checked to see if the
bit is set and then the cursor is advanced by one position. To match the position
of a multibyte search character the procedure is different. For multibyte UTF-8
characters of length k, it is the last (k-1)th byte of the multibyte sequence in the
bitstream that marks the character’s location. Figure 1 illustrates the process
of matching a character class of a three byte multibyte character. The locations
of the first two bytes of each character in the character class CC have been
marked with zeros while the bitstream M1 marks the current cursor positions.
To match multibyte characters, first a nonfinal helper bitstream must be formed.
The Nonfinal bitstream is formed by marking the locations of the first bytes of
two byte sequences, the first two bytes of three byte sequences, and the first
three bytes of any four byte sequences. The ScanThru(current, nonfinal)

operation is then applied, in order to advance all of the current cursor positions
to the locations of the (k-1)th final character positions. To find any matches
the result is then compared with the bits that are set in the UTF-8 character
class bitstream. After this, the cursor is advanced by one position to be ready
for the next matching operation.

CC 001...001.........

M1 1.....1....1......

nonfinal 11....11..........
T1 = ScanThru(M1, nonfinal) ..1.....1.........

T2 = CC ∧ T1 ..1.....1.........

M2 = Advance(M1) ...1.....1........

Fig. 1: Processing of a Multibyte Sequence

4.3 MatchStar for Unicode character classes

Figure 2 shows how the MatchStar operation can be used to find all matches of a
multibyte UTF-8 sequence. The problem is to find all matches to the character
class CC that can be reached from the current cursor positions in M1. First



we form two helper bitstreams initial and nonfinal. The initial bitstream marks
the locations of all single byte characters and the first bytes of all multibyte
characters. Any full match to a multibyte sequence must reach the initial position
of the next character. The nonfinal bitstream consists of all positions except those
that are final positions of UTF-8 sequences. It is used to ”fill in the gaps” in the
CC bitstream so that the MatchStar addition can move through a contiguous
sequence of one bits. In the figure, the gaps in CC are filled in by a bitwise-or
with the nonfinal bitstream to produce T1. This is then used as the basis of the
MatchStar operation to yield T2. We then filter these results using the initial
bitstream to produce the final set of complete matches in M2.

CC 001001001.........

M1 1...........1..1..

initial 1..1..1..1..1..1..
nonfinal 11.11.11.11.11.11.

T1 = nonfinal ∨ CC 11111111111.11.11.

T2 = MatchStar(M1, T1) 111111111111......
M2 = T2 ∧ initial 1..1..1..1........

Fig. 2: Processing of MatchStar for a Multibyte Sequence

4.4 Predefined Unicode classes

Every character in the Unicode database has been assigned to a general category
classification based upon the character’s type. As the categories seldom change
the parallel bitstream equations for the categories have been statically compiled
into icGrep. Each of the categories contain a large number of code points, there-
fore an If Hierarchy optimization has been included in the statically compiled
implementation of each category. The optimization works under the assumption
that most input documents will only contain the code points of the characters
from a small number of writing systems. Processing the blocks of code points for
characters that exist outside of this range is unnecessary and will only add to
the total running time of the application. The optimization tests the input text
to determine the ranges of the code points that are contained in the input text
and it only processes the character class equations and the regular expression
matching equations for the code point ranges that the input text contains. The
optimization tests the input text with a series of nested if else statements, using
a process similar to that of a binary search. As the nesting of the statements
increases, the range of the code points in the conditions of the if statements
narrow until the exact ranges of the code points in the text has been found.



4.5 Character Class Intersection and Difference

4.6 Unicode Case-Insensitive Matching

5 Architecture

5.1 Regular Expression Preprocessing

RegEx

RegEx Parser

RegEx Transformations

Code Unit Compiler RegEx Compiler

Pablo Transformations

Pablo Compiler

LLVM Compiler

Dynamically-Generated Match Function

1) RegEx

2) Pablo

3) LLVM

Fig. 3: icGrep Architectural Diagram

As show in Figure 3, icGrep is composed of three logical layers: RegEx,
Pablo and the LLVM layer, each with their own intermediate representation
(IR), transformation and compilation modules. As we traverse the layers, the
IR becomes significantly more complex as it begins to mirror the final machine
code. The RegEx Parser validates and transforms the input RegEx into an ab-
stract syntax tree (AST). The AST is a minimalistic representation that, unlike
traditional RegEx, is not converted into a NFA or DFA for further processing.
Instead, icGrep passes the AST into the transformation module, which includes
a set of RegEx specific optimization passes. The initial Nullable pass, deter-
mines whether the RegEx contains any prefixes or suffixes that may be removed
or modified whilst still providing the same number of matches as the original
expression. For example, “a*bc+” is equivalent to “bc” because the Kleene Star
(Plus) operator matches zero (one) or more instances of a specific character.



The toUTF8 pass converts the characters in the input RegEx into the equiva-
lent expression(s) that represent the sequences of 8-bit code units necessary to
identify the presence of a particular character. Since some characters have mul-
tiple logically equivalent representations, such as ????, this may produce nested
sequences or alternations. This is described in more detail in §4.1. To allevi-
ate this, the final Simplification pass flattens nested sequences and alternations
into their simplest legal form. For example, “a(b((c|d)|e))” would become
“ab(c|d|e)” and “([0-9]{3,5}){3,5}”, “[0-9]{9,25}”.

The RegEx layer has two compilers: the Code Unit and RegEx Compiler,
both of which produce Pablo IR. Recall that the Pablo layer assumes a trans-
posed view of the input data. The Code Unit Compiler transforms the input code
unit classes, either extracted from the RegEx or produced by the toUTF8 trans-
formation, into a series of bit stream equations. The RegEx Compiler assumes
that these have been calculated and transforms the RegEx AST into a sequence
of instructions. For instance, it would convert any alternations into a sequence
of calculations that are merged with ORs. The results of these passes are com-
bined and transformed through a series of typical optimization passes, including
dead code elimination (DCE), common subexpression elimination (CSE), and
constant folding. These are necessary at this stage because the RegEx AST may
include common subsequences that are costly to recognize in that form. Simi-
larly, to keep the Code Unit Compiler a linear time function, it may introduce
redundant IR instructions as it applies traditional Boolean algebra transforma-
tions, such as de Morgan’s law, to the computed streams. An intended side-effect
of these passes is that they eliminate the need to analyze the data-dependencies
inherent in the carry-bit logic, which is necessary for some Pablo instructions
but problematic for optimizers to reason about non-conservatively. The Pablo
Compiler then converts the Pablo IR into LLVM IR. This is a relatively straight-
forward conversion: the only complexities it introduces is the generation of Phi
nodes, linking of statically-compiled functions, and assignment of carry variables.
It produces the dynamically-generated match function used by the icGrep.

5.2 Dynamic Grep Engine

As shown in Figure 4, icGrep takes the input data and transposed it into 8
parallel bit streams through S2P module. The required streams, e.g. line break
stream, can then be generated using the 8 basis bits streams. The JIT function
retrieves the 8 basis bits and the required streams from their memory addresses
and starts the matching process. Named Property Library that includes all the
predefined Unicode categories is installed into JIT function and can be called
during the matching process. JIT function returns one bitstream that marks all
the matching positions. A match scanner will scan through this bitstream and
calculate the total counts or write the context of each match position.

We can also apply a pipeline parallelism strategy to further speed up the
process of icGrep. S2P and Required Streams Generator can be process in a sep-
arate thread and start even before the dynamic compilation starts. The output
of S2P and Required Streams Generator, that is the 8 basis bits streams and
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Fig. 4: icGrep Execution Diagram

the required streams, needs to be stored in a shared memory space so that the
JIT function can read from it. To be more efficient of memory space usage, we
only allocate limit amount of space for the shared data. When each chunk of the
shared space is filled up with the bitstream data, the thread will start writing
to the first chunk if it is released by JIT function. Otherwise, it will wait for
JIT function until it finishes processing that chunk. Therefore, the performance
is depended on the slowest thread. In the case that the cost of transposition
and required stream generation is more than the matching process, we can fur-
ther divide up the work and assign two threads for S2P and Required Streams
Generator.

6 Evaluation

In this section, we report on the evaluation of ICgrep performance, looking at
three aspects. First we consider a performance studies in a series of Unicode
regular expression search problems in comparison to the contemporary competi-
tors, including pcre2grep released in January 2015 and ugrep of the ICU 54.1
software distribution. Then we move on to investigate some performance as-
pects of ICgrep internal methods, looking at the impact of optimizations and
multithreading.

6.1 ICgrep vs. Contemporary Competitors

6.2 Optimizations of Bitwise Methods

In order to support evaluation of bitwise methods, as well as to support the teach-
ing of those methods and ongoing research, icGrep has an array of command-line



options. This makes it relatively straightforward to report on certain perfor-
mance aspects of ICgrep, while others require special builds.

For example, the command-line switch -disable-matchstar can be used to
eliminate the use of the MatchStar operation for handling Kleene-* repetition
of character classes. In this case, icGrep substitutes a while loop that iteratively
extends match results. Surprisingly, this does not change performance much in
many practical cases. In each block, the maximum iteration count is the maxi-
mum length run encountered; the overall performance is based on the average of
these maximums throughout the file. But when search for XML tags using the
regular expression <[^!?][^>]*>, a slowdown of more than 2X may be found in
files with many long tags.

The -disable-log2-bounded-repetition flag allows these effectiveness of
the special techniques for bounded repetition of byte classes to be assessed. A
slowdown of 30% was observed with the searches using the regular expression
(^|[ ])[a-zA-Z]{11,33}([.!? ]|$), for example.

To assess the effectiveness of inserting if-statements, the number of non-
nullable pattern elements between the if-tests can be set with the -if-insertion-gap=
option. The default value in icGrep is 3, setting the gap to 100 effectively turns of
if-insertion. Eliminating if-insertion sometimes improves performance by avoid-
ing the extra if tests and branch mispredications. For patterns with long strings,
however, there can be a substantial slowdown; searching for a pattern of length
40 slows down by more than 50% without the if-statement short-circuiting.

ICgrep also provides options that allow various internal representations to
be printed out. These can aid in understanding and/or debugging performance
issues. For example, the option -print-REs show the parsed regular expression
as it goes through various transformations. The internal Pablo code generated
may be displayed with -print-pablo. This can be quite useful in helping un-
derstand the match process. It also possible to print out the generated LLVM
IR code (-dump-generated-IR), but this may be less useful as it includes many
details of low-level carry-handling that obscures the core logic.

6.3 Single vs. Multithreaded Performance

7 Conclusion
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