
Bitwise Data Parallelism with LLVM: The
ICgrep Case Study

Anonymous

No Institute Given

Abstract. Bitwise data parallelism has recently been shown to have
considerable promise as the basis for a new, fundamentally parallel, style
of regular expression processing. This paper examines the application of
this approach to the development a full-featured Unicode-capable open-
source grep implementation. Constructed using a layered architecture
combining Parabix and LLVM compiler technologies, icGrep is the first
instance of a potentially large class of text processing applications that
achieve high performance text processing through the combination of
dynamic compilation and bitwise data parallelism. In performance com-
parisons with several contemporary alternatives, 10X or better speedups
are often observed.

1 Introduction

Although well-established technical standards exist for Unicode regular expres-
sions [4], most of today’s regular expression processing toolsets fail to support
the full set of processing features even at the most basic level [11]. One of the
fundamental issues is performance and so it makes good sense to consider the
ways in which parallel processing approaches can help address the gap.

Efforts to improve the performance of regular expression matching through
parallelization have generally concentrated on the use of SIMD, multicore or
GPU technologies to accelerate multiple instances of independent matching prob-
lems. Scarpazza [10] used SIMD and multicore parallelism to accelerate small
ruleset tokenization applications on the Cell Broadband Engine. Valaspura [9]
built on these techniques to accelerate business analytics applications using SSE
instructions on commodity processors. Zu et al [12] use GPU technology to im-
plement NFA-based regular expression matching with parallelism devoted both
to processing a compressed active state array as well as to handling matching
of multiple packet instances. These works have not generally tackled Unicode
matching problems.

Using parallel methods to accelerate matching of a single pattern on a sin-
gle input stream is more difficult. Indeed, of the 13 dwarves identified in the
Berkeley overview of parallel computing research, finite state machines (FSMs)
are considered the hardest to parallelize (embarassingly sequential) [1]. How-
ever, some success has been reported recently along two independent lines of
research. Mytkowicz et al [8] use SIMD shuffle operations to implement compos-
able DFA transitions using dynamic convergence to reduce the number of states

in play at any one time and range coalescing to compact the transition tables.
Unfortunately, the method seems unlikely to apply well to Unicode regular ex-
pression matching problems, which routinely require thousands of DFA states
for named Unicode properties. Building on the Parabix framework, Cameron et
al. [3] introduce regular expression matching using a new bitwise data parallel
approach.

In this paper, we report on the use of the implementation of a full Unicode
regular expression search tool, building on the bitwise data parallel methods of
the Parabix framework combined with the dynamic compilation capabilities of
LLVM [5]. The result is icGrep, a high-performance, full-featured open-source
grep implementation with systematic support for Unicode regular expressions.
As an alternative to classical grep implementations, icGrep offers dramatic per-
formance acceleration in Unicode regular expression matching.

The remainder of this paper is organized as follows. Section 2 presents back-
ground material dealing with Unicode regular expressions, the Parabix frame-
work and regular expression matching techniques using bitwise data parallelism.
Section 3 addresses the issues and performance challenges associated with meet-
ing Unicode regular expression requirements and presents the extensions to the
Parabix techniques that we have developed to address them. Section 4 describes
the overall architecture of the icGrep implementation with a focus on the inte-
gration of Parabix and LLVM technologies. Section 5 evaluates the performance
of icGrep on several types of matching problems with contemporary competitors,
including the latest versions of GNU grep, pcregrep, ugrep of the ICU (Interna-
tional Component for Unicode) and re2grep. Section 6 concludes the paper with
remarks on developing the Parabix+LLVM framework for other applications
as well as identifying further research questions in Unicode regular expression
matching with bitwise data parallelism.

2 Background

Unicode Regular Expressions. Traditional regular expression syntax is oriented
towards string search using regular expressions over ASCII or extended-ASCII
byte sequences. A grep search for a line beginning with a capitalized word might
use the pattern “^[A-Z][a-z]+” (“extended” syntax). Here, “^” is a zero-width
assertion matching only at the start of a line, “[A-Z]” is a character class
that matches any single character in the contiguous range of characters from
A through Z, while the plus operator in “[a-z]+” denotes repetition of one or
more lower case ASCII letters.

While explicit listing of characters of interest is practical with ASCII, it is
less so with Unicode. In the Unicode 7.0 database, there are 1490 characters
categorized as upper case and 1841 categorized as lower case. Rather than ex-
plicit listing of all characters of interest, then, it is more practical to use named
character classes, such as Lu for upper case letters and Ll for lower case letters.
Using these names, our search might be rewritten to find capitalized words in
any language as “^\p{Lu}\p{Ll}+” (Perl-compatible syntax). The Unicode con-

sortium has defined an extensive list of named properties that can be used in
regular expressions.

Beyond named properties, Unicode Technical Standard #18 defines addi-
tional requirements for Unicode regular expressions, at three levels of complex-
ity [4]. Level 1 generally relates to properties expressed in terms of individual
Unicode codepoints, while level 2 introduces complexities due to codepoint se-
quences that form grapheme clusters, and level 3 relates to tailored locale-specific
support. We consider only Unicode level 1 requirements in this paper, as most
grep implementations are incomplete with respect the requirements even at this
level. The additional level 1 regular expression requirements primarily relate to
larger classes of characters that are used in identifying line breaks, word breaks
and case-insensitive matching. Beyond this, there is one important syntactic
extension: the ability to refine character class specifications using set intersec-
tion and subtraction. For example, [\p{Greek}&&\p{Lu}] denotes the class of
upper case Greek letters, while [\p{Ll}--\p{ASCII}] denotes the class of all
non-ASCII lower case letters.

Bitwise Data Parallel Matching. Regular expression search using bitwise data
parallelism has been recently introduced and shown to considerably outperform
methods based on DFAs or NFAs [3]. In essence, the method is 100% data
parallel, considering all input positions in a file simultaneously. A set of parallel
bit streams is computed, with each bit position corresponding to one code-unit
position within input character stream. Character class streams, such as [d] for
the stream that marks the position of “d” characters and [a-z] for the stream of
lower case ASCII alphabetics are first computed in a fully data-parallel manner.
Then the matching process proper begins taking advance of bitwise logic and
shifting operations as well as an operation for finding all matches to a character
class repetition known as MatchStar. At each step of the process a marker bit
stream identifies the full set of positions within the input data stream that match
the regular expression to this point.

input data dead dreams defeated.

M1 = Advance([d]) .1..1.1......1......1

M2 = MatchStar(M1, [a-z]) .1111.111111.11111111
M3 = Advance(M2 ∧ [e]) ..1.....1.....1.1..1.

M4 = Advance(M3 ∧ [d])1

Fig. 1: Matching d[a-z]*ed Using Bitwise Data Parallelism

For example, Figure 1 shows how the regular expression d[a-z]*ed is matched
against some input text using bitwise methods. In this diagram we use periods
to denote 0 bits so that the 1 bits stand out. In the first step the character class
stream [d] is matched and the results shifted one position (Advance) to produce

marker bitstream M1. Five matches indicated by marker bits are now in play
simultaneously. The next step applies the MatchStar operation to find all the
matches that may then be reached with the Kleene-* repetition [a-z]* (M2).
This produces pending matches at many positions. However, there is no need to
consider these matches one at a time using lazy or greedy matching strategies.
Rather, the full marker stream M3 of remaining possibilites after matching [e]

is easily computed using bitwise logic and shift. The final step produces marker
stream M4 indicating the single position at which the entire regular expression
is matched.

The MatchStar operation turns out to be surprisingly simple [3].

MatchStar(M,C) = (((M ∧ C) + C)⊕ C) ∨M

A single bit stream addition operation suffices to find all reachable positions from
marker stream M through character class stream C. Interestingly, the MatchStar
operation also has application to the parallelized long-stream addition itself [3],
as well as the bit-parallel edit distance algorithm of Myers[7].

The Parabix toolchain [6] provides a set of compilers and run-time libraries
that target the SIMD instructions of commodity processors (e.g., SSE or AVX
instructions on x86-64 architecture). Input is processed in blocks of code units
equal to the size in bits of the SIMD registers, for example, 128 bytes at a time
using 128-bit registers. Using the Parabix facilities, the bitwise data parallel ap-
proach to regular expression search was shown to deliver substantial performance
acceleration for traditional ASCII regular expression matching tasks, often 5X
or better [3].

3 Bitwise Methods for UTF-8

As described in the following section, icGrep is a reimplementation of the bitwise
data parallel method implemented on top of LLVM infrastructure and adapted
for Unicode regular expression search through data streams represented in UTF-
8. In this section, we present the techniques we have used to extend the bitwise
matching techniques to the variable-length encodings of UTF-8.

The first requirement in implementing a regular expression processor over
UTF-8 data streams is to translate Unicode regular expressions over codepoints
to corresponding regular expressions over sequences of UTF-8 bytes or code units.
The toUTF8 transformation performs this as a regular expression transformation,
transforming input expressions such as ‘\u{244}[\u{2030}-\u{2137}]‘ to the
corresponding UTF-8 regular expression consisting of the series of sequences and
alternations shown below:
\xE2((\x84[\x80-\xB7])|(([\x81-\x83][\x80-\xBF])|(\x80[\xB0-\xBF])))

Unicode Advance. As illustrated in Section 2, a bitwise shift (Advance) operation
is frequently used in shifting a marker stream from positions matched by one
regular expression element to the next. However, characters are represented by

variable-length byte sequences in UTF-8, so that a simple shift operation is
inadequate to implement the operation of advancing bit stream positions from
one Unicode character to the next.

In order to address the requirements of Unicode advance, we use the ScanThru
[2] operation to move a set of markers each through the nonfinal bytes of UTF-8
sequences to the final byte position. Figure 2 shows this technique in operation
in the case of advancing through byte sequences (each 3 bytes in length) corre-
sponding to Chinese characters. To better demonstrate the process, we use ni3,
hao and men to represent these characters. CCni3 is the bitstream that marks
character ni3 and CChao is the bitstream that marks character stream hao. To
match a two UTF-8 character sequence ni3hao, we first create an Initial steam
that marks the first byte of all the valid characters. We also produce a NonFi-
nal stream that marks every byte of all the multibyte characters except for the
last byte. Using Initial to ScanThru NonFinal, we get the bitstream M2, which
marks the positions of the last byte of every character. An overlap between M2

and CCni3 gives the start position for matching the next character. As illus-
trated by Adv, we find two matches for ni3 and from these two positions we can
start the matching process for the next character hao. The final result stream
shows 1 match for the multibyte sequence ni3hao.

input data ni3hao(Hello),ni3men(You),

CCni3 ..1.............1.........

CChao1....................

Initial 1..1..111111111..1..111111

NonFinal 11.11.........11.11.......

M1 = ScanThru(Initial ,NonFinal) ..1..111111111..1..1111111

Adv = Advance(M1 ∧ CCni3) ...1.............1........

M2 = ScanThru(Initial ∧Adv ,NonFinal)1.............1......

match = M2 ∧ CChao1....................

Fig. 2: Processing of a Multibyte Sequence ni3hao

Unicode MatchStar. The MatchStar(M,C) operation directly implements the
operation of finding all positions reachable from a marker bit in M through a
character class repetition of an ASCII byte class C. In UTF-8 matching, however,
the character class byte streams are marked at their final positions. Thus the
one bits of a Unicode character class stream are not necessarily contiguous. This
in turn means that the carry propagation within the MatchStar operation may
terminate prematurely.

In order to remedy this problem, icGrep again uses the two helper bitstreams
Initial and NonFinal. Any full match to a multibyte sequence must reach the
initial position of the next character. The NonFinal bitstream consists of all

positions except those that are final positions of UTF-8 sequences. It is used to
“fill in the gaps” in the CC bitstream so that the MatchStar addition can move
through a contiguous sequence of one bits. In this way, matching of an arbitrary
Unicode character class C (with a 1 bit set at final positions of any members of
the class), can be implemented using MatchStar(M,C|NonFinal).

Predefined Unicode Classes. icGrep employs a set of bitstreams that are pre-
compiled into the executable. These include all bitstreams corresponding to Uni-
code property expressions such as \p{Greek}. Each property potentially contains
many code points, so we further embed the calculations within an if hierarchy.
Each if-statement within the hierarchy determines whether the current block
contains any codepoints at all in a given Unicode range. At the outer level,
the ranges are quite coarse, becoming successively refined at deeper levels. This
technique works well when input documents contain long runs of text confined
to one or a few ranges.

4 Architecture

RegEx

RegEx Parser

RegEx Transformations

RegEx Compiler

Parabix Transformations

Parabix Compiler

LLVM Compiler

Dynamically-Generated Match Function

1) RegEx AST

2) Parabix

3) LLVM

Fig. 3: icGrep compilation architecture

Regular Expression Preprocessing. As shown in Figure 3, compilation in ic-
Grep comprises three logical layers: RegEx, Parabix and the LLVM layer, each

with their own intermediate representation (IR), transformation and compila-
tion modules. As we traverse the layers, the IR becomes more complex as it be-
gins to mirror the final machine code. The layering enables further optimization
based on information available at each stage. The initial RegEx Parser validates
and transforms the input RegEx into an abstract syntax tree (AST). Succes-
sive RegEx Transformations exploit knowledge domain knowledge to optimize
the regular expressions. An initial Nullable pass, determines whether the RegEx
contains prefixes or suffixes that may be removed or modified whilst match-
ing the same lines of text as the original expression. For example, “a*bc+” is
equivalent to “bc” because the Kleene Star (Plus) operator matches zero (one)
or more instances of a specific character. The aforementioned toUTF8 trans-
formation also applies during this phase to generate code unit classes. A final
Simplification pass flattens nested structures into their simplest legal form. For
example, “a(b((c|d)|e))” becomes “ab(c|d|e)” and “([0-9]{3,5}){3,5}”
becomes “[0-9]{9,25}”.

The next layer transforms this AST into the instructions in the Parabix
IR. Recall that the Parabix layer assumes a transposed view of the input data.
The RegEx Compiler first transforms all input code unit classes, analogous to
non-Unicode character classes, into a series of equations over these transposed
bitstreams. It next transforms the AST into Parabix instructions that use the re-
sults of these equations. For instance, it converts alternations into a sequence of
calculations that are merged with ORs. The results of these passes are combined
and transformed through typical optimization passes including dead code elim-
ination (DCE), common subexpression elimination (CSE) and constant folding.
These optimizations exploit redundancies that are harder to recognize in the
RegEx AST itself.

The Parabix Compiler then directly converts the Parabix IR into LLVM IR.
The LLVM Compiler framework provides flexible APIs for compilation and link-
ing. Using these, icGrep dynamically generates a match function for identifying
occurrences of the RegEx.

Dynamic Grep Engine. Figure 4 shows the structure of the icGrep matching
engine. The input data is transposed into 8 parallel bit streams through the
Transposition module. Using the 8 basis bits streams, the Required Streams
Generator computes the line break streams, UTF-8 validation streams and the
Initial and NonFinal streams needed to support ScanThru and MatchStar with
UTF-8 data. The Dynamic Matcher, dynamically compiled via LLVM, retrieves
the 8 basis bits and the required streams from their memory addresses and
starts the matching process. During the matching process, any references to
named Unicode properties generate calls to the appropriate routine in the Named
Property Library. The Dynamic Matcher returns one bitstream that marks all
the positions that fully match the compiled regular expression. Finally, a Match
Scanner scans through the returned bitstream to select the matching lines and
generate the normal grep output.

We can also apply a pipeline parallelism strategy to further speed up the
process of icGrep. Transposition and the Required Streams Generator can be

Transposition Thread

Stream Generator Thread

Matcher Thread

Streaming Input Data

Transposition

Required Streams Generator

Dynamic Matcher Named Property Library

Match Scanner

Streaming Output Result

Fig. 4: Data flow in an icGrep execution

performed in a separate thread which can start even before the dynamic compi-
lation starts. The output of Transposition and the Required Streams Generator,
that is the 8 basis bits streams and the required streams, are stored in a shared
memory buffer for subsequent processing by the Dynamic Matcher once com-
pilation is complete. A single thread performs both compilation and matching
using the computed basis and required streams. To avoid L2 cache contention, we
allocate only a limited amount of space for the shared data in a circular buffer.
The performance is dependent on the slowest thread. In the case that the cost of
transposition and required stream generation is more than the matching process,
we can further divide up the work and assign two threads for Transposition and
the Required Streams Generator.

5 Evaluation

In this section, we report on the evaluation of ICgrep performance, looking at
three aspects. First we consider a performance studies in a series of Unicode
regular expression search problems in comparison to the contemporary competi-
tors, including pcre2grep released in January 2015 and ugrep of the ICU 54.1
software distribution. Then we move on to investigate some performance as-
pects of ICgrep internal methods, looking at the impact of optimizations and
multithreading.

5.1 Simple Property Expressions

A key feature of Unicode level 1 support in regular expression engines is how
the support that they provide for property expressions and combinations of

property expressions using set union, intersection and difference operators. Both
ugrep and icgrep provide systematic support for all property expressions at
Unicode Level 1 as well as set union, intersection and difference. On the other
hand, pcre2grep does not support the set intersection and difference opera-
tors directly. However, these operators can instead be expressed using a regular
expression feature known as a lookbehind assertion. Set intersection involves a
regular expression formed with a one of the property expressions and a positive
lookbehind assertion on the other, while set difference uses a negative lookbehind
assertion.

We generated a set of regular expressions involving all Unicode values of
the Unicode general category property (gc) and all values of the Unicode script
property (sc). We then generated expressions involving random pairs of gc and
sc values combined with a random set operator chosen from union, intersection
and difference. All property values are represented at least once. A small number
of expressions were removed because they involved properties not supported by
pcre2grep. In the end 246 test expressions were constructed in this process.

We selected a set of Wikimedia XML files in several major languages repre-
senting most of the world’s major language families as a test corpus. For each
program under test, we perform searches for each regular expression against each
XML document. Results are presented in Figure 5. Performance is reported in
CPU cycles per byte on an Intel Core i7 machine. The results were grouped by
the percentage of matching lines found in the XML document, grouped in 5%
increments. ICgrep shows dramatically better performance, particularly when
searching for rare items. As shown in the figure, pcre2grep and ugrep both show
increased performance (reduced CPU cycles per byte) with increasing percent-
age of matches found. In essence, each match found allows these programs to
skip the full processing of the rest of the line. On the other hand, icGrep shows
a slight drop-off in performance with the number of matches found. This is pri-
marily due to property classes that include large numbers of codepoints. These
classes require more bitstream equations for calculation and also have a greater
probability of matching. Nevertheless, the performance of icGrep in matching
the defined property expressions is stable and well ahead of the competitors in
all cases.

5.2 Complex Expressions

We also comparative performance of the matching engines on a series of more
complex expressions as shown in Table 2.

5.3 Optimizations of Bitwise Methods

In order to support evaluation of bitwise methods, as well as to support the teach-
ing of those methods and ongoing research, icGrep has an array of command-line
options. This makes it relatively straightforward to report on certain perfor-
mance aspects of ICgrep, while others require special builds.

0 20 40 60 80 100

0

50

100

150

Percentage of Matching Lines

C
P

U
C

y
cl

es
P

er
B

y
te

icGrep
ugrep541
pcre2grep

Fig. 5: Matching Performance for Simple Property Expressions

Name Regular Expression

alphanumeric #1 ^[\p{L}\p{N}]*((\p{L}\p{N})|(\p{N}\p{L}))[\p{L}\p{N}]*$

alphanumeric #2 [\p{L}\p{N}]*((\p{L}\p{N})|(\p{N}\p{L}))[\p{L}\p{N}]*

arabic ^[\p{Arabic}\p{Common}]*\p{Arabic}[\p{Arabic}\p{Common}]*$

currency (\p{Sc}\s*(\d*|(\d{1,3}([,.]\d{3})*))([,.]\d{2}?)?)|

((\d*|(\d{1,3}([,.]\d{3})*))([,.]\d{2}?)?\s*\p{Sc})

email ([^\p{Z}<]+@[\p{L}\p{M}\p{N}.-]+\.(\p{L}\p{M}*){2,6})(>|\p{Z}|$)

Table 1: Regular Expressions

For example, the command-line switch -disable-matchstar can be used to
eliminate the use of the MatchStar operation for handling Kleene-* repetition
of character classes. In this case, icGrep substitutes a while loop that iteratively
extends match results. Surprisingly, this does not change performance much in
many practical cases. In each block, the maximum iteration count is the maxi-
mum length run encountered; the overall performance is based on the average of
these maximums throughout the file. But when search for XML tags using the
regular expression <[^!?][^>]*>, a slowdown of more than 2X may be found in
files with many long tags.

The -disable-log2-bounded-repetition flag allows these effectiveness of
the special techniques for bounded repetition of byte classes to be assessed. A
slowdown of 30% was observed with the searches using the regular expression
(^|[])[a-zA-Z]{11,33}([.!?]|$), for example.

To control the insertion of if-statements into dynamically generated code,
the number of non-nullable pattern elements between the if-tests can be set
with the -if-insertion-gap= option. The default value in icGrep is 3, setting

Expression icgrep icgrep-mt2 icgrep-mt3 pcre2grep ugrep541

alphanumeric #1 2.4 – 5.0 2.0 – 4.1 2.0 – 4.1 8.2 – 11.3 8.8 – 11.3
alphanumeric #2 2.3 – 4.9 1.9 – 4.0 2.0 – 4.0 209.9 – 563.5 182.3 – 457.9
arabic 1.5 – 3.4 1.1 – 2.4 1.1 – 2.5 7.5 – 270.8 8.9 – 327.8
currency 0.7 – 2.1 0.6 – 1.5 0.4 – 1.3 188.4 – 352.3 52.8 – 152.8
email 3.0 – 6.9 0.6 – 2.1 0.4 – 1.9 67.2 – 1442.0 108.8 – 1022.3

Table 2: Matching Times for Complex Expressions

the gap to 100 effectively turns of if-insertion. Eliminating if-insertion sometimes
improves performance by avoiding the extra if tests and branch mispredications.
For patterns with long strings, however, there can be a substantial slowdown;
searching for a pattern of length 40 slows down by more than 50% without the
if-statement short-circuiting.

ICgrep also provides options that allow various internal representations to
be printed out. These can aid in understanding and/or debugging performance
issues. For example, the option -print-REs show the parsed regular expression
as it goes through various transformations. The internal Parabix code generated
may be displayed with -print-Parabix. This can be quite useful in helping
understand the match process. It also possible to print out the generated LLVM
IR code (-dump-generated-IR), but this may be less useful as it includes many
details of low-level carry-handling that obscures the core logic.

The precompiled calculations of the various Unicode properties are each
placed in if-hierarchies as described previously. To assess the impact of this
strategy, we built a version of icGrep without such if-hierarchies. In this case,
when a Unicode property class is defined, bitwise logic equations are applied for
all members of the class independent of the Unicode blocks represented in the
input document. For the classes covering the largest numbers of codepoints, we
observed slowdowns of up to 5X.

5.4 Single vs. Multithreaded Performance

6 Conclusion

icGrep demonstrates that predictable high-performance Unicode regular expres-
sion search can be achieved using a systematically parallel approach based on
bitwise data parallelism. On modern commodity processors with SSE2 or better
SIMD instruction sets, performance is dramatically better than that achievable
using sequential state-transition methods based on DFAs, NFAs or backtrack-
ing. Multithread parallelism further enhances performance using a pipeline par-
allelism model.

Future research includes the investigation of regular expression matching
techniques to handle Unicode level 2 and 3 requirements as well as the extension
of optimization techniques to take advantage of MatchStar for more complex
repetitions. Beyond regular expression matching, investigation of the bitwise

0 20 40 60 80 100
0

1

2

3

Percentage of Matching Lines

S
ec

o
n
d
s

P
er

G
B

(1
0
0
0
3
)

icGrep (Base)

icGrep (MT2)

icGrep (MT3)

Fig. 6: Multithreading Performance

data parallel model for other demanding Unicode processing tasks also seems
worthwhile.

References

1. Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, et al. The landscape of parallel computing research:
A view from Berkeley. Technical report, Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

2. Robert D Cameron, Ehsan Amiri, Kenneth S Herdy, Dan Lin, Thomas C Shermer,
and Fred P Popowich. Parallel scanning with bitstream addition: An XML case
study. In Euro-Par 2011 Parallel Processing, pages 2–13. Springer, 2011.

3. Robert D. Cameron, Thomas C. Shermer, Arrvindh Shriraman, Kenneth S. Herdy,
Dan Lin, Benjamin R. Hull, and Meng Lin. Bitwise data parallelism in regular ex-
pression matching. In Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation (PACT), PACT ’14, pages 139–150, New York, NY,
USA, 2014. ACM.

4. Mark Davis and A Heninger. Unicode technical standard 18, Unicode regular
expressions. The Unicode Consortium, 2012.

5. Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimization, 2004.
CGO 2004. International Symposium on, pages 75–86. IEEE, 2004.

6. Dan Lin, Nigel Medforth, Kenneth S Herdy, Arrvindh Shriraman, and Rob
Cameron. Parabix: Boosting the efficiency of text processing on commodity pro-
cessors. In High Performance Computer Architecture (HPCA), 2012 IEEE 18th
International Symposium on, pages 1–12. IEEE, 2012.

7. Gene Myers. A fast bit-vector algorithm for approximate string matching based
on dynamic programming. Journal of the ACM (JACM), 46(3):395–415, 1999.

8. Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-parallel finite-
state machines. In Proceedings of the 19th international conference on Architectural
support for programming languages and operating systems, pages 529–542. ACM,
2014.

9. Valentina Salapura, Tejas Karkhanis, Priya Nagpurkar, and Jose Moreira. Acceler-
ating business analytics applications. In High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on, pages 1–10. IEEE, 2012.

10. Daniele Paolo Scarpazza. Top-performance tokenization and small-ruleset regular
expression matching. International Journal of Parallel Programming, 39(1):3–32,
2011.

11. Jon Stewart and Joel Uckelman. Unicode search of dirty data, or: How i learned
to stop worrying and love Unicode technical standard # 18. Digital Investigation,
10:S116–S125, 2013.

12. Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qun-
feng Dong. Gpu-based nfa implementation for memory efficient high speed regular
expression matching. In PPoPP ’12 - Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, pages 129–140.
ACM, 2012.

